Extract Docstrings for all fuctions of an object.
First construct an object of any type, execute this notebook, then convert to html for easy viewing.
jupyter nbconvert --to html --no-input --execute notebook.ipynb
R WU
Dec 2023
pandas.core.frame.DataFrame
Two-dimensional, size-mutable, potentially heterogeneous tabular data.
Data structure also contains labeled axes (rows and columns).
Arithmetic operations align on both row and column labels. Can be
thought of as a dict-like container for Series objects. The primary
pandas data structure.
Parameters
----------
data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame
Dict can contain Series, arrays, constants, dataclass or list-like objects. If
data is a dict, column order follows insertion-order. If a dict contains Series
which have an index defined, it is aligned by its index.
.. versionchanged:: 0.25.0
If data is a list of dicts, column order follows insertion-order.
index : Index or array-like
Index to use for resulting frame. Will default to RangeIndex if
no indexing information part of input data and no index provided.
columns : Index or array-like
Column labels to use for resulting frame when data does not have them,
defaulting to RangeIndex(0, 1, 2, ..., n). If data contains column labels,
will perform column selection instead.
dtype : dtype, default None
Data type to force. Only a single dtype is allowed. If None, infer.
copy : bool or None, default None
Copy data from inputs.
For dict data, the default of None behaves like ``copy=True``. For DataFrame
or 2d ndarray input, the default of None behaves like ``copy=False``.
If data is a dict containing one or more Series (possibly of different dtypes),
``copy=False`` will ensure that these inputs are not copied.
.. versionchanged:: 1.3.0
See Also
--------
DataFrame.from_records : Constructor from tuples, also record arrays.
DataFrame.from_dict : From dicts of Series, arrays, or dicts.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_table : Read general delimited file into DataFrame.
read_clipboard : Read text from clipboard into DataFrame.
Notes
-----
Please reference the :ref:`User Guide <basics.dataframe>` for more information.
Examples
--------
Constructing DataFrame from a dictionary.
>>> d = {'col1': [1, 2], 'col2': [3, 4]}
>>> df = pd.DataFrame(data=d)
>>> df
col1 col2
0 1 3
1 2 4
Notice that the inferred dtype is int64.
>>> df.dtypes
col1 int64
col2 int64
dtype: object
To enforce a single dtype:
>>> df = pd.DataFrame(data=d, dtype=np.int8)
>>> df.dtypes
col1 int8
col2 int8
dtype: object
Constructing DataFrame from a dictionary including Series:
>>> d = {'col1': [0, 1, 2, 3], 'col2': pd.Series([2, 3], index=[2, 3])}
>>> pd.DataFrame(data=d, index=[0, 1, 2, 3])
col1 col2
0 0 NaN
1 1 NaN
2 2 2.0
3 3 3.0
Constructing DataFrame from numpy ndarray:
>>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
... columns=['a', 'b', 'c'])
>>> df2
a b c
0 1 2 3
1 4 5 6
2 7 8 9
Constructing DataFrame from a numpy ndarray that has labeled columns:
>>> data = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)],
... dtype=[("a", "i4"), ("b", "i4"), ("c", "i4")])
>>> df3 = pd.DataFrame(data, columns=['c', 'a'])
...
>>> df3
c a
0 3 1
1 6 4
2 9 7
Constructing DataFrame from dataclass:
>>> from dataclasses import make_dataclass
>>> Point = make_dataclass("Point", [("x", int), ("y", int)])
>>> pd.DataFrame([Point(0, 0), Point(0, 3), Point(2, 3)])
x y
0 0 0
1 0 3
2 2 3
Return a Series/DataFrame with absolute numeric value of each element.
This function only applies to elements that are all numeric.
Returns
-------
abs
Series/DataFrame containing the absolute value of each element.
See Also
--------
numpy.absolute : Calculate the absolute value element-wise.
Notes
-----
For ``complex`` inputs, ``1.2 + 1j``, the absolute value is
:math:`\sqrt{ a^2 + b^2 }`.
Examples
--------
Absolute numeric values in a Series.
>>> s = pd.Series([-1.10, 2, -3.33, 4])
>>> s.abs()
0 1.10
1 2.00
2 3.33
3 4.00
dtype: float64
Absolute numeric values in a Series with complex numbers.
>>> s = pd.Series([1.2 + 1j])
>>> s.abs()
0 1.56205
dtype: float64
Absolute numeric values in a Series with a Timedelta element.
>>> s = pd.Series([pd.Timedelta('1 days')])
>>> s.abs()
0 1 days
dtype: timedelta64[ns]
Select rows with data closest to certain value using argsort (from
`StackOverflow <https://stackoverflow.com/a/17758115>`__).
>>> df = pd.DataFrame({
... 'a': [4, 5, 6, 7],
... 'b': [10, 20, 30, 40],
... 'c': [100, 50, -30, -50]
... })
>>> df
a b c
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
>>> df.loc[(df.c - 43).abs().argsort()]
a b c
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50
Get Addition of dataframe and other, element-wise (binary operator `add`).
Equivalent to ``dataframe + other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `radd`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Prefix labels with string `prefix`.
For Series, the row labels are prefixed.
For DataFrame, the column labels are prefixed.
Parameters
----------
prefix : str
The string to add before each label.
Returns
-------
Series or DataFrame
New Series or DataFrame with updated labels.
See Also
--------
Series.add_suffix: Suffix row labels with string `suffix`.
DataFrame.add_suffix: Suffix column labels with string `suffix`.
Examples
--------
>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2
2 3
3 4
dtype: int64
>>> s.add_prefix('item_')
item_0 1
item_1 2
item_2 3
item_3 4
dtype: int64
>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df
A B
0 1 3
1 2 4
2 3 5
3 4 6
>>> df.add_prefix('col_')
col_A col_B
0 1 3
1 2 4
2 3 5
3 4 6
Suffix labels with string `suffix`.
For Series, the row labels are suffixed.
For DataFrame, the column labels are suffixed.
Parameters
----------
suffix : str
The string to add after each label.
Returns
-------
Series or DataFrame
New Series or DataFrame with updated labels.
See Also
--------
Series.add_prefix: Prefix row labels with string `prefix`.
DataFrame.add_prefix: Prefix column labels with string `prefix`.
Examples
--------
>>> s = pd.Series([1, 2, 3, 4])
>>> s
0 1
1 2
2 3
3 4
dtype: int64
>>> s.add_suffix('_item')
0_item 1
1_item 2
2_item 3
3_item 4
dtype: int64
>>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
>>> df
A B
0 1 3
1 2 4
2 3 5
3 4 6
>>> df.add_suffix('_col')
A_col B_col
0 1 3
1 2 4
2 3 5
3 4 6
Aggregate using one or more operations over the specified axis.
Parameters
----------
func : function, str, list or dict
Function to use for aggregating the data. If a function, must either
work when passed a DataFrame or when passed to DataFrame.apply.
Accepted combinations are:
- function
- string function name
- list of functions and/or function names, e.g. ``[np.sum, 'mean']``
- dict of axis labels -> functions, function names or list of such.
axis : {0 or 'index', 1 or 'columns'}, default 0
If 0 or 'index': apply function to each column.
If 1 or 'columns': apply function to each row.
*args
Positional arguments to pass to `func`.
**kwargs
Keyword arguments to pass to `func`.
Returns
-------
scalar, Series or DataFrame
The return can be:
* scalar : when Series.agg is called with single function
* Series : when DataFrame.agg is called with a single function
* DataFrame : when DataFrame.agg is called with several functions
Return scalar, Series or DataFrame.
The aggregation operations are always performed over an axis, either the
index (default) or the column axis. This behavior is different from
`numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,
`var`), where the default is to compute the aggregation of the flattened
array, e.g., ``numpy.mean(arr_2d)`` as opposed to
``numpy.mean(arr_2d, axis=0)``.
`agg` is an alias for `aggregate`. Use the alias.
See Also
--------
DataFrame.apply : Perform any type of operations.
DataFrame.transform : Perform transformation type operations.
core.groupby.GroupBy : Perform operations over groups.
core.resample.Resampler : Perform operations over resampled bins.
core.window.Rolling : Perform operations over rolling window.
core.window.Expanding : Perform operations over expanding window.
core.window.ExponentialMovingWindow : Perform operation over exponential weighted
window.
Notes
-----
`agg` is an alias for `aggregate`. Use the alias.
Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.
A passed user-defined-function will be passed a Series for evaluation.
Examples
--------
>>> df = pd.DataFrame([[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9],
... [np.nan, np.nan, np.nan]],
... columns=['A', 'B', 'C'])
Aggregate these functions over the rows.
>>> df.agg(['sum', 'min'])
A B C
sum 12.0 15.0 18.0
min 1.0 2.0 3.0
Different aggregations per column.
>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
A B
sum 12.0 NaN
min 1.0 2.0
max NaN 8.0
Aggregate different functions over the columns and rename the index of the resulting
DataFrame.
>>> df.agg(x=('A', max), y=('B', 'min'), z=('C', np.mean))
A B C
x 7.0 NaN NaN
y NaN 2.0 NaN
z NaN NaN 6.0
Aggregate over the columns.
>>> df.agg("mean", axis="columns")
0 2.0
1 5.0
2 8.0
3 NaN
dtype: float64
Aggregate using one or more operations over the specified axis.
Parameters
----------
func : function, str, list or dict
Function to use for aggregating the data. If a function, must either
work when passed a DataFrame or when passed to DataFrame.apply.
Accepted combinations are:
- function
- string function name
- list of functions and/or function names, e.g. ``[np.sum, 'mean']``
- dict of axis labels -> functions, function names or list of such.
axis : {0 or 'index', 1 or 'columns'}, default 0
If 0 or 'index': apply function to each column.
If 1 or 'columns': apply function to each row.
*args
Positional arguments to pass to `func`.
**kwargs
Keyword arguments to pass to `func`.
Returns
-------
scalar, Series or DataFrame
The return can be:
* scalar : when Series.agg is called with single function
* Series : when DataFrame.agg is called with a single function
* DataFrame : when DataFrame.agg is called with several functions
Return scalar, Series or DataFrame.
The aggregation operations are always performed over an axis, either the
index (default) or the column axis. This behavior is different from
`numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,
`var`), where the default is to compute the aggregation of the flattened
array, e.g., ``numpy.mean(arr_2d)`` as opposed to
``numpy.mean(arr_2d, axis=0)``.
`agg` is an alias for `aggregate`. Use the alias.
See Also
--------
DataFrame.apply : Perform any type of operations.
DataFrame.transform : Perform transformation type operations.
core.groupby.GroupBy : Perform operations over groups.
core.resample.Resampler : Perform operations over resampled bins.
core.window.Rolling : Perform operations over rolling window.
core.window.Expanding : Perform operations over expanding window.
core.window.ExponentialMovingWindow : Perform operation over exponential weighted
window.
Notes
-----
`agg` is an alias for `aggregate`. Use the alias.
Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.
A passed user-defined-function will be passed a Series for evaluation.
Examples
--------
>>> df = pd.DataFrame([[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9],
... [np.nan, np.nan, np.nan]],
... columns=['A', 'B', 'C'])
Aggregate these functions over the rows.
>>> df.agg(['sum', 'min'])
A B C
sum 12.0 15.0 18.0
min 1.0 2.0 3.0
Different aggregations per column.
>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
A B
sum 12.0 NaN
min 1.0 2.0
max NaN 8.0
Aggregate different functions over the columns and rename the index of the resulting
DataFrame.
>>> df.agg(x=('A', max), y=('B', 'min'), z=('C', np.mean))
A B C
x 7.0 NaN NaN
y NaN 2.0 NaN
z NaN NaN 6.0
Aggregate over the columns.
>>> df.agg("mean", axis="columns")
0 2.0
1 5.0
2 8.0
3 NaN
dtype: float64
Align two objects on their axes with the specified join method.
Join method is specified for each axis Index.
Parameters
----------
other : DataFrame or Series
join : {'outer', 'inner', 'left', 'right'}, default 'outer'
axis : allowed axis of the other object, default None
Align on index (0), columns (1), or both (None).
level : int or level name, default None
Broadcast across a level, matching Index values on the
passed MultiIndex level.
copy : bool, default True
Always returns new objects. If copy=False and no reindexing is
required then original objects are returned.
fill_value : scalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any
"compatible" value.
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed Series:
- pad / ffill: propagate last valid observation forward to next valid.
- backfill / bfill: use NEXT valid observation to fill gap.
limit : int, default None
If method is specified, this is the maximum number of consecutive
NaN values to forward/backward fill. In other words, if there is
a gap with more than this number of consecutive NaNs, it will only
be partially filled. If method is not specified, this is the
maximum number of entries along the entire axis where NaNs will be
filled. Must be greater than 0 if not None.
fill_axis : {0 or 'index', 1 or 'columns'}, default 0
Filling axis, method and limit.
broadcast_axis : {0 or 'index', 1 or 'columns'}, default None
Broadcast values along this axis, if aligning two objects of
different dimensions.
Returns
-------
(left, right) : (DataFrame, type of other)
Aligned objects.
Examples
--------
>>> df = pd.DataFrame(
... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2]
... )
>>> other = pd.DataFrame(
... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]],
... columns=["A", "B", "C", "D"],
... index=[2, 3, 4],
... )
>>> df
D B E A
1 1 2 3 4
2 6 7 8 9
>>> other
A B C D
2 10 20 30 40
3 60 70 80 90
4 600 700 800 900
Align on columns:
>>> left, right = df.align(other, join="outer", axis=1)
>>> left
A B C D E
1 4 2 NaN 1 3
2 9 7 NaN 6 8
>>> right
A B C D E
2 10 20 30 40 NaN
3 60 70 80 90 NaN
4 600 700 800 900 NaN
We can also align on the index:
>>> left, right = df.align(other, join="outer", axis=0)
>>> left
D B E A
1 1.0 2.0 3.0 4.0
2 6.0 7.0 8.0 9.0
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
>>> right
A B C D
1 NaN NaN NaN NaN
2 10.0 20.0 30.0 40.0
3 60.0 70.0 80.0 90.0
4 600.0 700.0 800.0 900.0
Finally, the default `axis=None` will align on both index and columns:
>>> left, right = df.align(other, join="outer", axis=None)
>>> left
A B C D E
1 4.0 2.0 NaN 1.0 3.0
2 9.0 7.0 NaN 6.0 8.0
3 NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN
>>> right
A B C D E
1 NaN NaN NaN NaN NaN
2 10.0 20.0 30.0 40.0 NaN
3 60.0 70.0 80.0 90.0 NaN
4 600.0 700.0 800.0 900.0 NaN
Return whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a series or
along a Dataframe axis that is False or equivalent (e.g. zero or
empty).
Parameters
----------
axis : {0 or 'index', 1 or 'columns', None}, default 0
Indicate which axis or axes should be reduced. For `Series` this parameter
is unused and defaults to 0.
* 0 / 'index' : reduce the index, return a Series whose index is the
original column labels.
* 1 / 'columns' : reduce the columns, return a Series whose index is the
original index.
* None : reduce all axes, return a scalar.
bool_only : bool, default None
Include only boolean columns. If None, will attempt to use everything,
then use only boolean data. Not implemented for Series.
skipna : bool, default True
Exclude NA/null values. If the entire row/column is NA and skipna is
True, then the result will be True, as for an empty row/column.
If skipna is False, then NA are treated as True, because these are not
equal to zero.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
**kwargs : any, default None
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
Series or DataFrame
If level is specified, then, DataFrame is returned; otherwise, Series
is returned.
See Also
--------
Series.all : Return True if all elements are True.
DataFrame.any : Return True if one (or more) elements are True.
Examples
--------
**Series**
>>> pd.Series([True, True]).all()
True
>>> pd.Series([True, False]).all()
False
>>> pd.Series([], dtype="float64").all()
True
>>> pd.Series([np.nan]).all()
True
>>> pd.Series([np.nan]).all(skipna=False)
True
**DataFrames**
Create a dataframe from a dictionary.
>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df
col1 col2
0 True True
1 True False
Default behaviour checks if values in each column all return True.
>>> df.all()
col1 True
col2 False
dtype: bool
Specify ``axis='columns'`` to check if values in each row all return True.
>>> df.all(axis='columns')
0 True
1 False
dtype: bool
Or ``axis=None`` for whether every value is True.
>>> df.all(axis=None)
False
Return whether any element is True, potentially over an axis.
Returns False unless there is at least one element within a series or
along a Dataframe axis that is True or equivalent (e.g. non-zero or
non-empty).
Parameters
----------
axis : {0 or 'index', 1 or 'columns', None}, default 0
Indicate which axis or axes should be reduced. For `Series` this parameter
is unused and defaults to 0.
* 0 / 'index' : reduce the index, return a Series whose index is the
original column labels.
* 1 / 'columns' : reduce the columns, return a Series whose index is the
original index.
* None : reduce all axes, return a scalar.
bool_only : bool, default None
Include only boolean columns. If None, will attempt to use everything,
then use only boolean data. Not implemented for Series.
skipna : bool, default True
Exclude NA/null values. If the entire row/column is NA and skipna is
True, then the result will be False, as for an empty row/column.
If skipna is False, then NA are treated as True, because these are not
equal to zero.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
**kwargs : any, default None
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
Series or DataFrame
If level is specified, then, DataFrame is returned; otherwise, Series
is returned.
See Also
--------
numpy.any : Numpy version of this method.
Series.any : Return whether any element is True.
Series.all : Return whether all elements are True.
DataFrame.any : Return whether any element is True over requested axis.
DataFrame.all : Return whether all elements are True over requested axis.
Examples
--------
**Series**
For Series input, the output is a scalar indicating whether any element
is True.
>>> pd.Series([False, False]).any()
False
>>> pd.Series([True, False]).any()
True
>>> pd.Series([], dtype="float64").any()
False
>>> pd.Series([np.nan]).any()
False
>>> pd.Series([np.nan]).any(skipna=False)
True
**DataFrame**
Whether each column contains at least one True element (the default).
>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]})
>>> df
A B C
0 1 0 0
1 2 2 0
>>> df.any()
A True
B True
C False
dtype: bool
Aggregating over the columns.
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]})
>>> df
A B
0 True 1
1 False 2
>>> df.any(axis='columns')
0 True
1 True
dtype: bool
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]})
>>> df
A B
0 True 1
1 False 0
>>> df.any(axis='columns')
0 True
1 False
dtype: bool
Aggregating over the entire DataFrame with ``axis=None``.
>>> df.any(axis=None)
True
`any` for an empty DataFrame is an empty Series.
>>> pd.DataFrame([]).any()
Series([], dtype: bool)
Append rows of `other` to the end of caller, returning a new object.
.. deprecated:: 1.4.0
Use :func:`concat` instead. For further details see
:ref:`whatsnew_140.deprecations.frame_series_append`
Columns in `other` that are not in the caller are added as new columns.
Parameters
----------
other : DataFrame or Series/dict-like object, or list of these
The data to append.
ignore_index : bool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
verify_integrity : bool, default False
If True, raise ValueError on creating index with duplicates.
sort : bool, default False
Sort columns if the columns of `self` and `other` are not aligned.
.. versionchanged:: 1.0.0
Changed to not sort by default.
Returns
-------
DataFrame
A new DataFrame consisting of the rows of caller and the rows of `other`.
See Also
--------
concat : General function to concatenate DataFrame or Series objects.
Notes
-----
If a list of dict/series is passed and the keys are all contained in
the DataFrame's index, the order of the columns in the resulting
DataFrame will be unchanged.
Iteratively appending rows to a DataFrame can be more computationally
intensive than a single concatenate. A better solution is to append
those rows to a list and then concatenate the list with the original
DataFrame all at once.
Examples
--------
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'), index=['x', 'y'])
>>> df
A B
x 1 2
y 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'), index=['x', 'y'])
>>> df.append(df2)
A B
x 1 2
y 3 4
x 5 6
y 7 8
With `ignore_index` set to True:
>>> df.append(df2, ignore_index=True)
A B
0 1 2
1 3 4
2 5 6
3 7 8
The following, while not recommended methods for generating DataFrames,
show two ways to generate a DataFrame from multiple data sources.
Less efficient:
>>> df = pd.DataFrame(columns=['A'])
>>> for i in range(5):
... df = df.append({'A': i}, ignore_index=True)
>>> df
A
0 0
1 1
2 2
3 3
4 4
More efficient:
>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
... ignore_index=True)
A
0 0
1 1
2 2
3 3
4 4
Apply a function along an axis of the DataFrame.
Objects passed to the function are Series objects whose index is
either the DataFrame's index (``axis=0``) or the DataFrame's columns
(``axis=1``). By default (``result_type=None``), the final return type
is inferred from the return type of the applied function. Otherwise,
it depends on the `result_type` argument.
Parameters
----------
func : function
Function to apply to each column or row.
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis along which the function is applied:
* 0 or 'index': apply function to each column.
* 1 or 'columns': apply function to each row.
raw : bool, default False
Determines if row or column is passed as a Series or ndarray object:
* ``False`` : passes each row or column as a Series to the
function.
* ``True`` : the passed function will receive ndarray objects
instead.
If you are just applying a NumPy reduction function this will
achieve much better performance.
result_type : {'expand', 'reduce', 'broadcast', None}, default None
These only act when ``axis=1`` (columns):
* 'expand' : list-like results will be turned into columns.
* 'reduce' : returns a Series if possible rather than expanding
list-like results. This is the opposite of 'expand'.
* 'broadcast' : results will be broadcast to the original shape
of the DataFrame, the original index and columns will be
retained.
The default behaviour (None) depends on the return value of the
applied function: list-like results will be returned as a Series
of those. However if the apply function returns a Series these
are expanded to columns.
args : tuple
Positional arguments to pass to `func` in addition to the
array/series.
**kwargs
Additional keyword arguments to pass as keywords arguments to
`func`.
Returns
-------
Series or DataFrame
Result of applying ``func`` along the given axis of the
DataFrame.
See Also
--------
DataFrame.applymap: For elementwise operations.
DataFrame.aggregate: Only perform aggregating type operations.
DataFrame.transform: Only perform transforming type operations.
Notes
-----
Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.
Examples
--------
>>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
>>> df
A B
0 4 9
1 4 9
2 4 9
Using a numpy universal function (in this case the same as
``np.sqrt(df)``):
>>> df.apply(np.sqrt)
A B
0 2.0 3.0
1 2.0 3.0
2 2.0 3.0
Using a reducing function on either axis
>>> df.apply(np.sum, axis=0)
A 12
B 27
dtype: int64
>>> df.apply(np.sum, axis=1)
0 13
1 13
2 13
dtype: int64
Returning a list-like will result in a Series
>>> df.apply(lambda x: [1, 2], axis=1)
0 [1, 2]
1 [1, 2]
2 [1, 2]
dtype: object
Passing ``result_type='expand'`` will expand list-like results
to columns of a Dataframe
>>> df.apply(lambda x: [1, 2], axis=1, result_type='expand')
0 1
0 1 2
1 1 2
2 1 2
Returning a Series inside the function is similar to passing
``result_type='expand'``. The resulting column names
will be the Series index.
>>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
foo bar
0 1 2
1 1 2
2 1 2
Passing ``result_type='broadcast'`` will ensure the same shape
result, whether list-like or scalar is returned by the function,
and broadcast it along the axis. The resulting column names will
be the originals.
>>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
A B
0 1 2
1 1 2
2 1 2
Apply a function to a Dataframe elementwise.
This method applies a function that accepts and returns a scalar
to every element of a DataFrame.
Parameters
----------
func : callable
Python function, returns a single value from a single value.
na_action : {None, 'ignore'}, default None
If ‘ignore’, propagate NaN values, without passing them to func.
.. versionadded:: 1.2
**kwargs
Additional keyword arguments to pass as keywords arguments to
`func`.
.. versionadded:: 1.3.0
Returns
-------
DataFrame
Transformed DataFrame.
See Also
--------
DataFrame.apply : Apply a function along input axis of DataFrame.
Examples
--------
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
>>> df
0 1
0 1.000 2.120
1 3.356 4.567
>>> df.applymap(lambda x: len(str(x)))
0 1
0 3 4
1 5 5
Like Series.map, NA values can be ignored:
>>> df_copy = df.copy()
>>> df_copy.iloc[0, 0] = pd.NA
>>> df_copy.applymap(lambda x: len(str(x)), na_action='ignore')
0 1
0 NaN 4
1 5.0 5
Note that a vectorized version of `func` often exists, which will
be much faster. You could square each number elementwise.
>>> df.applymap(lambda x: x**2)
0 1
0 1.000000 4.494400
1 11.262736 20.857489
But it's better to avoid applymap in that case.
>>> df ** 2
0 1
0 1.000000 4.494400
1 11.262736 20.857489
Convert time series to specified frequency.
Returns the original data conformed to a new index with the specified
frequency.
If the index of this DataFrame is a :class:`~pandas.PeriodIndex`, the new index
is the result of transforming the original index with
:meth:`PeriodIndex.asfreq <pandas.PeriodIndex.asfreq>` (so the original index
will map one-to-one to the new index).
Otherwise, the new index will be equivalent to ``pd.date_range(start, end,
freq=freq)`` where ``start`` and ``end`` are, respectively, the first and
last entries in the original index (see :func:`pandas.date_range`). The
values corresponding to any timesteps in the new index which were not present
in the original index will be null (``NaN``), unless a method for filling
such unknowns is provided (see the ``method`` parameter below).
The :meth:`resample` method is more appropriate if an operation on each group of
timesteps (such as an aggregate) is necessary to represent the data at the new
frequency.
Parameters
----------
freq : DateOffset or str
Frequency DateOffset or string.
method : {'backfill'/'bfill', 'pad'/'ffill'}, default None
Method to use for filling holes in reindexed Series (note this
does not fill NaNs that already were present):
* 'pad' / 'ffill': propagate last valid observation forward to next
valid
* 'backfill' / 'bfill': use NEXT valid observation to fill.
how : {'start', 'end'}, default end
For PeriodIndex only (see PeriodIndex.asfreq).
normalize : bool, default False
Whether to reset output index to midnight.
fill_value : scalar, optional
Value to use for missing values, applied during upsampling (note
this does not fill NaNs that already were present).
Returns
-------
DataFrame
DataFrame object reindexed to the specified frequency.
See Also
--------
reindex : Conform DataFrame to new index with optional filling logic.
Notes
-----
To learn more about the frequency strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
Examples
--------
Start by creating a series with 4 one minute timestamps.
>>> index = pd.date_range('1/1/2000', periods=4, freq='T')
>>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
>>> df = pd.DataFrame({'s': series})
>>> df
s
2000-01-01 00:00:00 0.0
2000-01-01 00:01:00 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:03:00 3.0
Upsample the series into 30 second bins.
>>> df.asfreq(freq='30S')
s
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 NaN
2000-01-01 00:03:00 3.0
Upsample again, providing a ``fill value``.
>>> df.asfreq(freq='30S', fill_value=9.0)
s
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 9.0
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 9.0
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 9.0
2000-01-01 00:03:00 3.0
Upsample again, providing a ``method``.
>>> df.asfreq(freq='30S', method='bfill')
s
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 NaN
2000-01-01 00:01:30 2.0
2000-01-01 00:02:00 2.0
2000-01-01 00:02:30 3.0
2000-01-01 00:03:00 3.0
Return the last row(s) without any NaNs before `where`.
The last row (for each element in `where`, if list) without any
NaN is taken.
In case of a :class:`~pandas.DataFrame`, the last row without NaN
considering only the subset of columns (if not `None`)
If there is no good value, NaN is returned for a Series or
a Series of NaN values for a DataFrame
Parameters
----------
where : date or array-like of dates
Date(s) before which the last row(s) are returned.
subset : str or array-like of str, default `None`
For DataFrame, if not `None`, only use these columns to
check for NaNs.
Returns
-------
scalar, Series, or DataFrame
The return can be:
* scalar : when `self` is a Series and `where` is a scalar
* Series: when `self` is a Series and `where` is an array-like,
or when `self` is a DataFrame and `where` is a scalar
* DataFrame : when `self` is a DataFrame and `where` is an
array-like
Return scalar, Series, or DataFrame.
See Also
--------
merge_asof : Perform an asof merge. Similar to left join.
Notes
-----
Dates are assumed to be sorted. Raises if this is not the case.
Examples
--------
A Series and a scalar `where`.
>>> s = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40])
>>> s
10 1.0
20 2.0
30 NaN
40 4.0
dtype: float64
>>> s.asof(20)
2.0
For a sequence `where`, a Series is returned. The first value is
NaN, because the first element of `where` is before the first
index value.
>>> s.asof([5, 20])
5 NaN
20 2.0
dtype: float64
Missing values are not considered. The following is ``2.0``, not
NaN, even though NaN is at the index location for ``30``.
>>> s.asof(30)
2.0
Take all columns into consideration
>>> df = pd.DataFrame({'a': [10, 20, 30, 40, 50],
... 'b': [None, None, None, None, 500]},
... index=pd.DatetimeIndex(['2018-02-27 09:01:00',
... '2018-02-27 09:02:00',
... '2018-02-27 09:03:00',
... '2018-02-27 09:04:00',
... '2018-02-27 09:05:00']))
>>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30',
... '2018-02-27 09:04:30']))
a b
2018-02-27 09:03:30 NaN NaN
2018-02-27 09:04:30 NaN NaN
Take a single column into consideration
>>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30',
... '2018-02-27 09:04:30']),
... subset=['a'])
a b
2018-02-27 09:03:30 30 NaN
2018-02-27 09:04:30 40 NaN
Assign new columns to a DataFrame.
Returns a new object with all original columns in addition to new ones.
Existing columns that are re-assigned will be overwritten.
Parameters
----------
**kwargs : dict of {str: callable or Series}
The column names are keywords. If the values are
callable, they are computed on the DataFrame and
assigned to the new columns. The callable must not
change input DataFrame (though pandas doesn't check it).
If the values are not callable, (e.g. a Series, scalar, or array),
they are simply assigned.
Returns
-------
DataFrame
A new DataFrame with the new columns in addition to
all the existing columns.
Notes
-----
Assigning multiple columns within the same ``assign`` is possible.
Later items in '\*\*kwargs' may refer to newly created or modified
columns in 'df'; items are computed and assigned into 'df' in order.
Examples
--------
>>> df = pd.DataFrame({'temp_c': [17.0, 25.0]},
... index=['Portland', 'Berkeley'])
>>> df
temp_c
Portland 17.0
Berkeley 25.0
Where the value is a callable, evaluated on `df`:
>>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)
temp_c temp_f
Portland 17.0 62.6
Berkeley 25.0 77.0
Alternatively, the same behavior can be achieved by directly
referencing an existing Series or sequence:
>>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32)
temp_c temp_f
Portland 17.0 62.6
Berkeley 25.0 77.0
You can create multiple columns within the same assign where one
of the columns depends on another one defined within the same assign:
>>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32,
... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9)
temp_c temp_f temp_k
Portland 17.0 62.6 290.15
Berkeley 25.0 77.0 298.15
Cast a pandas object to a specified dtype ``dtype``.
Parameters
----------
dtype : data type, or dict of column name -> data type
Use a numpy.dtype or Python type to cast entire pandas object to
the same type. Alternatively, use {col: dtype, ...}, where col is a
column label and dtype is a numpy.dtype or Python type to cast one
or more of the DataFrame's columns to column-specific types.
copy : bool, default True
Return a copy when ``copy=True`` (be very careful setting
``copy=False`` as changes to values then may propagate to other
pandas objects).
errors : {'raise', 'ignore'}, default 'raise'
Control raising of exceptions on invalid data for provided dtype.
- ``raise`` : allow exceptions to be raised
- ``ignore`` : suppress exceptions. On error return original object.
Returns
-------
casted : same type as caller
See Also
--------
to_datetime : Convert argument to datetime.
to_timedelta : Convert argument to timedelta.
to_numeric : Convert argument to a numeric type.
numpy.ndarray.astype : Cast a numpy array to a specified type.
Notes
-----
.. deprecated:: 1.3.0
Using ``astype`` to convert from timezone-naive dtype to
timezone-aware dtype is deprecated and will raise in a
future version. Use :meth:`Series.dt.tz_localize` instead.
Examples
--------
Create a DataFrame:
>>> d = {'col1': [1, 2], 'col2': [3, 4]}
>>> df = pd.DataFrame(data=d)
>>> df.dtypes
col1 int64
col2 int64
dtype: object
Cast all columns to int32:
>>> df.astype('int32').dtypes
col1 int32
col2 int32
dtype: object
Cast col1 to int32 using a dictionary:
>>> df.astype({'col1': 'int32'}).dtypes
col1 int32
col2 int64
dtype: object
Create a series:
>>> ser = pd.Series([1, 2], dtype='int32')
>>> ser
0 1
1 2
dtype: int32
>>> ser.astype('int64')
0 1
1 2
dtype: int64
Convert to categorical type:
>>> ser.astype('category')
0 1
1 2
dtype: category
Categories (2, int64): [1, 2]
Convert to ordered categorical type with custom ordering:
>>> from pandas.api.types import CategoricalDtype
>>> cat_dtype = CategoricalDtype(
... categories=[2, 1], ordered=True)
>>> ser.astype(cat_dtype)
0 1
1 2
dtype: category
Categories (2, int64): [2 < 1]
Note that using ``copy=False`` and changing data on a new
pandas object may propagate changes:
>>> s1 = pd.Series([1, 2])
>>> s2 = s1.astype('int64', copy=False)
>>> s2[0] = 10
>>> s1 # note that s1[0] has changed too
0 10
1 2
dtype: int64
Create a series of dates:
>>> ser_date = pd.Series(pd.date_range('20200101', periods=3))
>>> ser_date
0 2020-01-01
1 2020-01-02
2 2020-01-03
dtype: datetime64[ns]
Access a single value for a row/column label pair.
Similar to ``loc``, in that both provide label-based lookups. Use
``at`` if you only need to get or set a single value in a DataFrame
or Series.
Raises
------
KeyError
* If getting a value and 'label' does not exist in a DataFrame or
Series.
ValueError
* If row/column label pair is not a tuple or if any label from
the pair is not a scalar for DataFrame.
* If label is list-like (*excluding* NamedTuple) for Series.
See Also
--------
DataFrame.at : Access a single value for a row/column pair by label.
DataFrame.iat : Access a single value for a row/column pair by integer
position.
DataFrame.loc : Access a group of rows and columns by label(s).
DataFrame.iloc : Access a group of rows and columns by integer
position(s).
Series.at : Access a single value by label.
Series.iat : Access a single value by integer position.
Series.loc : Access a group of rows by label(s).
Series.iloc : Access a group of rows by integer position(s).
Notes
-----
See :ref:`Fast scalar value getting and setting <indexing.basics.get_value>`
for more details.
Examples
--------
>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
... index=[4, 5, 6], columns=['A', 'B', 'C'])
>>> df
A B C
4 0 2 3
5 0 4 1
6 10 20 30
Get value at specified row/column pair
>>> df.at[4, 'B']
2
Set value at specified row/column pair
>>> df.at[4, 'B'] = 10
>>> df.at[4, 'B']
10
Get value within a Series
>>> df.loc[5].at['B']
4
Select values at particular time of day (e.g., 9:30AM).
Parameters
----------
time : datetime.time or str
axis : {0 or 'index', 1 or 'columns'}, default 0
For `Series` this parameter is unused and defaults to 0.
Returns
-------
Series or DataFrame
Raises
------
TypeError
If the index is not a :class:`DatetimeIndex`
See Also
--------
between_time : Select values between particular times of the day.
first : Select initial periods of time series based on a date offset.
last : Select final periods of time series based on a date offset.
DatetimeIndex.indexer_at_time : Get just the index locations for
values at particular time of the day.
Examples
--------
>>> i = pd.date_range('2018-04-09', periods=4, freq='12H')
>>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
>>> ts
A
2018-04-09 00:00:00 1
2018-04-09 12:00:00 2
2018-04-10 00:00:00 3
2018-04-10 12:00:00 4
>>> ts.at_time('12:00')
A
2018-04-09 12:00:00 2
2018-04-10 12:00:00 4
dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
(key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
d = {}
for k, v in iterable:
d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
in the keyword argument list. For example: dict(one=1, two=2)
Built-in mutable sequence. If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
Synonym for :meth:`DataFrame.fillna` with ``method='bfill'``.
Returns
-------
Series/DataFrame or None
Object with missing values filled or None if ``inplace=True``.
Select values between particular times of the day (e.g., 9:00-9:30 AM).
By setting ``start_time`` to be later than ``end_time``,
you can get the times that are *not* between the two times.
Parameters
----------
start_time : datetime.time or str
Initial time as a time filter limit.
end_time : datetime.time or str
End time as a time filter limit.
include_start : bool, default True
Whether the start time needs to be included in the result.
.. deprecated:: 1.4.0
Arguments `include_start` and `include_end` have been deprecated
to standardize boundary inputs. Use `inclusive` instead, to set
each bound as closed or open.
include_end : bool, default True
Whether the end time needs to be included in the result.
.. deprecated:: 1.4.0
Arguments `include_start` and `include_end` have been deprecated
to standardize boundary inputs. Use `inclusive` instead, to set
each bound as closed or open.
inclusive : {"both", "neither", "left", "right"}, default "both"
Include boundaries; whether to set each bound as closed or open.
axis : {0 or 'index', 1 or 'columns'}, default 0
Determine range time on index or columns value.
For `Series` this parameter is unused and defaults to 0.
Returns
-------
Series or DataFrame
Data from the original object filtered to the specified dates range.
Raises
------
TypeError
If the index is not a :class:`DatetimeIndex`
See Also
--------
at_time : Select values at a particular time of the day.
first : Select initial periods of time series based on a date offset.
last : Select final periods of time series based on a date offset.
DatetimeIndex.indexer_between_time : Get just the index locations for
values between particular times of the day.
Examples
--------
>>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min')
>>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
>>> ts
A
2018-04-09 00:00:00 1
2018-04-10 00:20:00 2
2018-04-11 00:40:00 3
2018-04-12 01:00:00 4
>>> ts.between_time('0:15', '0:45')
A
2018-04-10 00:20:00 2
2018-04-11 00:40:00 3
You get the times that are *not* between two times by setting
``start_time`` later than ``end_time``:
>>> ts.between_time('0:45', '0:15')
A
2018-04-09 00:00:00 1
2018-04-12 01:00:00 4
None
Return the bool of a single element Series or DataFrame.
This must be a boolean scalar value, either True or False. It will raise a
ValueError if the Series or DataFrame does not have exactly 1 element, or that
element is not boolean (integer values 0 and 1 will also raise an exception).
Returns
-------
bool
The value in the Series or DataFrame.
See Also
--------
Series.astype : Change the data type of a Series, including to boolean.
DataFrame.astype : Change the data type of a DataFrame, including to boolean.
numpy.bool_ : NumPy boolean data type, used by pandas for boolean values.
Examples
--------
The method will only work for single element objects with a boolean value:
>>> pd.Series([True]).bool()
True
>>> pd.Series([False]).bool()
False
>>> pd.DataFrame({'col': [True]}).bool()
True
>>> pd.DataFrame({'col': [False]}).bool()
False
Make a box plot from DataFrame columns.
Make a box-and-whisker plot from DataFrame columns, optionally grouped
by some other columns. A box plot is a method for graphically depicting
groups of numerical data through their quartiles.
The box extends from the Q1 to Q3 quartile values of the data,
with a line at the median (Q2). The whiskers extend from the edges
of box to show the range of the data. By default, they extend no more than
`1.5 * IQR (IQR = Q3 - Q1)` from the edges of the box, ending at the farthest
data point within that interval. Outliers are plotted as separate dots.
For further details see
Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`_.
Parameters
----------
column : str or list of str, optional
Column name or list of names, or vector.
Can be any valid input to :meth:`pandas.DataFrame.groupby`.
by : str or array-like, optional
Column in the DataFrame to :meth:`pandas.DataFrame.groupby`.
One box-plot will be done per value of columns in `by`.
ax : object of class matplotlib.axes.Axes, optional
The matplotlib axes to be used by boxplot.
fontsize : float or str
Tick label font size in points or as a string (e.g., `large`).
rot : int or float, default 0
The rotation angle of labels (in degrees)
with respect to the screen coordinate system.
grid : bool, default True
Setting this to True will show the grid.
figsize : A tuple (width, height) in inches
The size of the figure to create in matplotlib.
layout : tuple (rows, columns), optional
For example, (3, 5) will display the subplots
using 3 columns and 5 rows, starting from the top-left.
return_type : {'axes', 'dict', 'both'} or None, default 'axes'
The kind of object to return. The default is ``axes``.
* 'axes' returns the matplotlib axes the boxplot is drawn on.
* 'dict' returns a dictionary whose values are the matplotlib
Lines of the boxplot.
* 'both' returns a namedtuple with the axes and dict.
* when grouping with ``by``, a Series mapping columns to
``return_type`` is returned.
If ``return_type`` is `None`, a NumPy array
of axes with the same shape as ``layout`` is returned.
backend : str, default None
Backend to use instead of the backend specified in the option
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
specify the ``plotting.backend`` for the whole session, set
``pd.options.plotting.backend``.
.. versionadded:: 1.0.0
**kwargs
All other plotting keyword arguments to be passed to
:func:`matplotlib.pyplot.boxplot`.
Returns
-------
result
See Notes.
See Also
--------
Series.plot.hist: Make a histogram.
matplotlib.pyplot.boxplot : Matplotlib equivalent plot.
Notes
-----
The return type depends on the `return_type` parameter:
* 'axes' : object of class matplotlib.axes.Axes
* 'dict' : dict of matplotlib.lines.Line2D objects
* 'both' : a namedtuple with structure (ax, lines)
For data grouped with ``by``, return a Series of the above or a numpy
array:
* :class:`~pandas.Series`
* :class:`~numpy.array` (for ``return_type = None``)
Use ``return_type='dict'`` when you want to tweak the appearance
of the lines after plotting. In this case a dict containing the Lines
making up the boxes, caps, fliers, medians, and whiskers is returned.
Examples
--------
Boxplots can be created for every column in the dataframe
by ``df.boxplot()`` or indicating the columns to be used:
.. plot::
:context: close-figs
>>> np.random.seed(1234)
>>> df = pd.DataFrame(np.random.randn(10, 4),
... columns=['Col1', 'Col2', 'Col3', 'Col4'])
>>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) # doctest: +SKIP
Boxplots of variables distributions grouped by the values of a third
variable can be created using the option ``by``. For instance:
.. plot::
:context: close-figs
>>> df = pd.DataFrame(np.random.randn(10, 2),
... columns=['Col1', 'Col2'])
>>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
... 'B', 'B', 'B', 'B', 'B'])
>>> boxplot = df.boxplot(by='X')
A list of strings (i.e. ``['X', 'Y']``) can be passed to boxplot
in order to group the data by combination of the variables in the x-axis:
.. plot::
:context: close-figs
>>> df = pd.DataFrame(np.random.randn(10, 3),
... columns=['Col1', 'Col2', 'Col3'])
>>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
... 'B', 'B', 'B', 'B', 'B'])
>>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A',
... 'B', 'A', 'B', 'A', 'B'])
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y'])
The layout of boxplot can be adjusted giving a tuple to ``layout``:
.. plot::
:context: close-figs
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
... layout=(2, 1))
Additional formatting can be done to the boxplot, like suppressing the grid
(``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``)
or changing the fontsize (i.e. ``fontsize=15``):
.. plot::
:context: close-figs
>>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15) # doctest: +SKIP
The parameter ``return_type`` can be used to select the type of element
returned by `boxplot`. When ``return_type='axes'`` is selected,
the matplotlib axes on which the boxplot is drawn are returned:
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes')
>>> type(boxplot)
<class 'matplotlib.axes._subplots.AxesSubplot'>
When grouping with ``by``, a Series mapping columns to ``return_type``
is returned:
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
... return_type='axes')
>>> type(boxplot)
<class 'pandas.core.series.Series'>
If ``return_type`` is `None`, a NumPy array of axes with the same shape
as ``layout`` is returned:
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
... return_type=None)
>>> type(boxplot)
<class 'numpy.ndarray'>
None
Immutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Parameters
----------
data : array-like (1-dimensional)
dtype : NumPy dtype (default: object)
If dtype is None, we find the dtype that best fits the data.
If an actual dtype is provided, we coerce to that dtype if it's safe.
Otherwise, an error will be raised.
copy : bool
Make a copy of input ndarray.
name : object
Name to be stored in the index.
tupleize_cols : bool (default: True)
When True, attempt to create a MultiIndex if possible.
See Also
--------
RangeIndex : Index implementing a monotonic integer range.
CategoricalIndex : Index of :class:`Categorical` s.
MultiIndex : A multi-level, or hierarchical Index.
IntervalIndex : An Index of :class:`Interval` s.
DatetimeIndex : Index of datetime64 data.
TimedeltaIndex : Index of timedelta64 data.
PeriodIndex : Index of Period data.
NumericIndex : Index of numpy int/uint/float data.
Int64Index : Index of purely int64 labels (deprecated).
UInt64Index : Index of purely uint64 labels (deprecated).
Float64Index : Index of purely float64 labels (deprecated).
Notes
-----
An Index instance can **only** contain hashable objects
Examples
--------
>>> pd.Index([1, 2, 3])
Int64Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc'))
Index(['a', 'b', 'c'], dtype='object')
Perform column-wise combine with another DataFrame.
Combines a DataFrame with `other` DataFrame using `func`
to element-wise combine columns. The row and column indexes of the
resulting DataFrame will be the union of the two.
Parameters
----------
other : DataFrame
The DataFrame to merge column-wise.
func : function
Function that takes two series as inputs and return a Series or a
scalar. Used to merge the two dataframes column by columns.
fill_value : scalar value, default None
The value to fill NaNs with prior to passing any column to the
merge func.
overwrite : bool, default True
If True, columns in `self` that do not exist in `other` will be
overwritten with NaNs.
Returns
-------
DataFrame
Combination of the provided DataFrames.
See Also
--------
DataFrame.combine_first : Combine two DataFrame objects and default to
non-null values in frame calling the method.
Examples
--------
Combine using a simple function that chooses the smaller column.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
>>> df1.combine(df2, take_smaller)
A B
0 0 3
1 0 3
Example using a true element-wise combine function.
>>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, np.minimum)
A B
0 1 2
1 0 3
Using `fill_value` fills Nones prior to passing the column to the
merge function.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
A B
0 0 -5.0
1 0 4.0
However, if the same element in both dataframes is None, that None
is preserved
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]})
>>> df1.combine(df2, take_smaller, fill_value=-5)
A B
0 0 -5.0
1 0 3.0
Example that demonstrates the use of `overwrite` and behavior when
the axis differ between the dataframes.
>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2])
>>> df1.combine(df2, take_smaller)
A B C
0 NaN NaN NaN
1 NaN 3.0 -10.0
2 NaN 3.0 1.0
>>> df1.combine(df2, take_smaller, overwrite=False)
A B C
0 0.0 NaN NaN
1 0.0 3.0 -10.0
2 NaN 3.0 1.0
Demonstrating the preference of the passed in dataframe.
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2])
>>> df2.combine(df1, take_smaller)
A B C
0 0.0 NaN NaN
1 0.0 3.0 NaN
2 NaN 3.0 NaN
>>> df2.combine(df1, take_smaller, overwrite=False)
A B C
0 0.0 NaN NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0
Update null elements with value in the same location in `other`.
Combine two DataFrame objects by filling null values in one DataFrame
with non-null values from other DataFrame. The row and column indexes
of the resulting DataFrame will be the union of the two. The resulting
dataframe contains the 'first' dataframe values and overrides the
second one values where both first.loc[index, col] and
second.loc[index, col] are not missing values, upon calling
first.combine_first(second).
Parameters
----------
other : DataFrame
Provided DataFrame to use to fill null values.
Returns
-------
DataFrame
The result of combining the provided DataFrame with the other object.
See Also
--------
DataFrame.combine : Perform series-wise operation on two DataFrames
using a given function.
Examples
--------
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
>>> df1.combine_first(df2)
A B
0 1.0 3.0
1 0.0 4.0
Null values still persist if the location of that null value
does not exist in `other`
>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]})
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2])
>>> df1.combine_first(df2)
A B C
0 NaN 4.0 NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0
Compare to another DataFrame and show the differences.
.. versionadded:: 1.1.0
Parameters
----------
other : DataFrame
Object to compare with.
align_axis : {0 or 'index', 1 or 'columns'}, default 1
Determine which axis to align the comparison on.
* 0, or 'index' : Resulting differences are stacked vertically
with rows drawn alternately from self and other.
* 1, or 'columns' : Resulting differences are aligned horizontally
with columns drawn alternately from self and other.
keep_shape : bool, default False
If true, all rows and columns are kept.
Otherwise, only the ones with different values are kept.
keep_equal : bool, default False
If true, the result keeps values that are equal.
Otherwise, equal values are shown as NaNs.
result_names : tuple, default ('self', 'other')
Set the dataframes names in the comparison.
.. versionadded:: 1.5.0
Returns
-------
DataFrame
DataFrame that shows the differences stacked side by side.
The resulting index will be a MultiIndex with 'self' and 'other'
stacked alternately at the inner level.
Raises
------
ValueError
When the two DataFrames don't have identical labels or shape.
See Also
--------
Series.compare : Compare with another Series and show differences.
DataFrame.equals : Test whether two objects contain the same elements.
Notes
-----
Matching NaNs will not appear as a difference.
Can only compare identically-labeled
(i.e. same shape, identical row and column labels) DataFrames
Examples
--------
>>> df = pd.DataFrame(
... {
... "col1": ["a", "a", "b", "b", "a"],
... "col2": [1.0, 2.0, 3.0, np.nan, 5.0],
... "col3": [1.0, 2.0, 3.0, 4.0, 5.0]
... },
... columns=["col1", "col2", "col3"],
... )
>>> df
col1 col2 col3
0 a 1.0 1.0
1 a 2.0 2.0
2 b 3.0 3.0
3 b NaN 4.0
4 a 5.0 5.0
>>> df2 = df.copy()
>>> df2.loc[0, 'col1'] = 'c'
>>> df2.loc[2, 'col3'] = 4.0
>>> df2
col1 col2 col3
0 c 1.0 1.0
1 a 2.0 2.0
2 b 3.0 4.0
3 b NaN 4.0
4 a 5.0 5.0
Align the differences on columns
>>> df.compare(df2)
col1 col3
self other self other
0 a c NaN NaN
2 NaN NaN 3.0 4.0
Assign result_names
>>> df.compare(df2, result_names=("left", "right"))
col1 col3
left right left right
0 a c NaN NaN
2 NaN NaN 3.0 4.0
Stack the differences on rows
>>> df.compare(df2, align_axis=0)
col1 col3
0 self a NaN
other c NaN
2 self NaN 3.0
other NaN 4.0
Keep the equal values
>>> df.compare(df2, keep_equal=True)
col1 col3
self other self other
0 a c 1.0 1.0
2 b b 3.0 4.0
Keep all original rows and columns
>>> df.compare(df2, keep_shape=True)
col1 col2 col3
self other self other self other
0 a c NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN 3.0 4.0
3 NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN
Keep all original rows and columns and also all original values
>>> df.compare(df2, keep_shape=True, keep_equal=True)
col1 col2 col3
self other self other self other
0 a c 1.0 1.0 1.0 1.0
1 a a 2.0 2.0 2.0 2.0
2 b b 3.0 3.0 3.0 4.0
3 b b NaN NaN 4.0 4.0
4 a a 5.0 5.0 5.0 5.0
Convert columns to best possible dtypes using dtypes supporting ``pd.NA``.
.. versionadded:: 1.0.0
Parameters
----------
infer_objects : bool, default True
Whether object dtypes should be converted to the best possible types.
convert_string : bool, default True
Whether object dtypes should be converted to ``StringDtype()``.
convert_integer : bool, default True
Whether, if possible, conversion can be done to integer extension types.
convert_boolean : bool, defaults True
Whether object dtypes should be converted to ``BooleanDtypes()``.
convert_floating : bool, defaults True
Whether, if possible, conversion can be done to floating extension types.
If `convert_integer` is also True, preference will be give to integer
dtypes if the floats can be faithfully casted to integers.
.. versionadded:: 1.2.0
Returns
-------
Series or DataFrame
Copy of input object with new dtype.
See Also
--------
infer_objects : Infer dtypes of objects.
to_datetime : Convert argument to datetime.
to_timedelta : Convert argument to timedelta.
to_numeric : Convert argument to a numeric type.
Notes
-----
By default, ``convert_dtypes`` will attempt to convert a Series (or each
Series in a DataFrame) to dtypes that support ``pd.NA``. By using the options
``convert_string``, ``convert_integer``, ``convert_boolean`` and
``convert_boolean``, it is possible to turn off individual conversions
to ``StringDtype``, the integer extension types, ``BooleanDtype``
or floating extension types, respectively.
For object-dtyped columns, if ``infer_objects`` is ``True``, use the inference
rules as during normal Series/DataFrame construction. Then, if possible,
convert to ``StringDtype``, ``BooleanDtype`` or an appropriate integer
or floating extension type, otherwise leave as ``object``.
If the dtype is integer, convert to an appropriate integer extension type.
If the dtype is numeric, and consists of all integers, convert to an
appropriate integer extension type. Otherwise, convert to an
appropriate floating extension type.
.. versionchanged:: 1.2
Starting with pandas 1.2, this method also converts float columns
to the nullable floating extension type.
In the future, as new dtypes are added that support ``pd.NA``, the results
of this method will change to support those new dtypes.
Examples
--------
>>> df = pd.DataFrame(
... {
... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")),
... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")),
... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")),
... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")),
... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")),
... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")),
... }
... )
Start with a DataFrame with default dtypes.
>>> df
a b c d e f
0 1 x True h 10.0 NaN
1 2 y False i NaN 100.5
2 3 z NaN NaN 20.0 200.0
>>> df.dtypes
a int32
b object
c object
d object
e float64
f float64
dtype: object
Convert the DataFrame to use best possible dtypes.
>>> dfn = df.convert_dtypes()
>>> dfn
a b c d e f
0 1 x True h 10 <NA>
1 2 y False i <NA> 100.5
2 3 z <NA> <NA> 20 200.0
>>> dfn.dtypes
a Int32
b string
c boolean
d string
e Int64
f Float64
dtype: object
Start with a Series of strings and missing data represented by ``np.nan``.
>>> s = pd.Series(["a", "b", np.nan])
>>> s
0 a
1 b
2 NaN
dtype: object
Obtain a Series with dtype ``StringDtype``.
>>> s.convert_dtypes()
0 a
1 b
2 <NA>
dtype: string
Make a copy of this object's indices and data.
When ``deep=True`` (default), a new object will be created with a
copy of the calling object's data and indices. Modifications to
the data or indices of the copy will not be reflected in the
original object (see notes below).
When ``deep=False``, a new object will be created without copying
the calling object's data or index (only references to the data
and index are copied). Any changes to the data of the original
will be reflected in the shallow copy (and vice versa).
Parameters
----------
deep : bool, default True
Make a deep copy, including a copy of the data and the indices.
With ``deep=False`` neither the indices nor the data are copied.
Returns
-------
copy : Series or DataFrame
Object type matches caller.
Notes
-----
When ``deep=True``, data is copied but actual Python objects
will not be copied recursively, only the reference to the object.
This is in contrast to `copy.deepcopy` in the Standard Library,
which recursively copies object data (see examples below).
While ``Index`` objects are copied when ``deep=True``, the underlying
numpy array is not copied for performance reasons. Since ``Index`` is
immutable, the underlying data can be safely shared and a copy
is not needed.
Since pandas is not thread safe, see the
:ref:`gotchas <gotchas.thread-safety>` when copying in a threading
environment.
Examples
--------
>>> s = pd.Series([1, 2], index=["a", "b"])
>>> s
a 1
b 2
dtype: int64
>>> s_copy = s.copy()
>>> s_copy
a 1
b 2
dtype: int64
**Shallow copy versus default (deep) copy:**
>>> s = pd.Series([1, 2], index=["a", "b"])
>>> deep = s.copy()
>>> shallow = s.copy(deep=False)
Shallow copy shares data and index with original.
>>> s is shallow
False
>>> s.values is shallow.values and s.index is shallow.index
True
Deep copy has own copy of data and index.
>>> s is deep
False
>>> s.values is deep.values or s.index is deep.index
False
Updates to the data shared by shallow copy and original is reflected
in both; deep copy remains unchanged.
>>> s[0] = 3
>>> shallow[1] = 4
>>> s
a 3
b 4
dtype: int64
>>> shallow
a 3
b 4
dtype: int64
>>> deep
a 1
b 2
dtype: int64
Note that when copying an object containing Python objects, a deep copy
will copy the data, but will not do so recursively. Updating a nested
data object will be reflected in the deep copy.
>>> s = pd.Series([[1, 2], [3, 4]])
>>> deep = s.copy()
>>> s[0][0] = 10
>>> s
0 [10, 2]
1 [3, 4]
dtype: object
>>> deep
0 [10, 2]
1 [3, 4]
dtype: object
Compute pairwise correlation of columns, excluding NA/null values.
Parameters
----------
method : {'pearson', 'kendall', 'spearman'} or callable
Method of correlation:
* pearson : standard correlation coefficient
* kendall : Kendall Tau correlation coefficient
* spearman : Spearman rank correlation
* callable: callable with input two 1d ndarrays
and returning a float. Note that the returned matrix from corr
will have 1 along the diagonals and will be symmetric
regardless of the callable's behavior.
min_periods : int, optional
Minimum number of observations required per pair of columns
to have a valid result. Currently only available for Pearson
and Spearman correlation.
numeric_only : bool, default True
Include only `float`, `int` or `boolean` data.
.. versionadded:: 1.5.0
.. deprecated:: 1.5.0
The default value of ``numeric_only`` will be ``False`` in a future
version of pandas.
Returns
-------
DataFrame
Correlation matrix.
See Also
--------
DataFrame.corrwith : Compute pairwise correlation with another
DataFrame or Series.
Series.corr : Compute the correlation between two Series.
Notes
-----
Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations.
* `Pearson correlation coefficient <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`_
* `Kendall rank correlation coefficient <https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient>`_
* `Spearman's rank correlation coefficient <https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient>`_
Examples
--------
>>> def histogram_intersection(a, b):
... v = np.minimum(a, b).sum().round(decimals=1)
... return v
>>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)],
... columns=['dogs', 'cats'])
>>> df.corr(method=histogram_intersection)
dogs cats
dogs 1.0 0.3
cats 0.3 1.0
>>> df = pd.DataFrame([(1, 1), (2, np.nan), (np.nan, 3), (4, 4)],
... columns=['dogs', 'cats'])
>>> df.corr(min_periods=3)
dogs cats
dogs 1.0 NaN
cats NaN 1.0
Compute pairwise correlation.
Pairwise correlation is computed between rows or columns of
DataFrame with rows or columns of Series or DataFrame. DataFrames
are first aligned along both axes before computing the
correlations.
Parameters
----------
other : DataFrame, Series
Object with which to compute correlations.
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to use. 0 or 'index' to compute row-wise, 1 or 'columns' for
column-wise.
drop : bool, default False
Drop missing indices from result.
method : {'pearson', 'kendall', 'spearman'} or callable
Method of correlation:
* pearson : standard correlation coefficient
* kendall : Kendall Tau correlation coefficient
* spearman : Spearman rank correlation
* callable: callable with input two 1d ndarrays
and returning a float.
numeric_only : bool, default True
Include only `float`, `int` or `boolean` data.
.. versionadded:: 1.5.0
.. deprecated:: 1.5.0
The default value of ``numeric_only`` will be ``False`` in a future
version of pandas.
Returns
-------
Series
Pairwise correlations.
See Also
--------
DataFrame.corr : Compute pairwise correlation of columns.
Examples
--------
>>> index = ["a", "b", "c", "d", "e"]
>>> columns = ["one", "two", "three", "four"]
>>> df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns)
>>> df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns)
>>> df1.corrwith(df2)
one 1.0
two 1.0
three 1.0
four 1.0
dtype: float64
>>> df2.corrwith(df1, axis=1)
a 1.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64
Count non-NA cells for each column or row.
The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending
on `pandas.options.mode.use_inf_as_na`) are considered NA.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
If 0 or 'index' counts are generated for each column.
If 1 or 'columns' counts are generated for each row.
level : int or str, optional
If the axis is a `MultiIndex` (hierarchical), count along a
particular `level`, collapsing into a `DataFrame`.
A `str` specifies the level name.
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
Returns
-------
Series or DataFrame
For each column/row the number of non-NA/null entries.
If `level` is specified returns a `DataFrame`.
See Also
--------
Series.count: Number of non-NA elements in a Series.
DataFrame.value_counts: Count unique combinations of columns.
DataFrame.shape: Number of DataFrame rows and columns (including NA
elements).
DataFrame.isna: Boolean same-sized DataFrame showing places of NA
elements.
Examples
--------
Constructing DataFrame from a dictionary:
>>> df = pd.DataFrame({"Person":
... ["John", "Myla", "Lewis", "John", "Myla"],
... "Age": [24., np.nan, 21., 33, 26],
... "Single": [False, True, True, True, False]})
>>> df
Person Age Single
0 John 24.0 False
1 Myla NaN True
2 Lewis 21.0 True
3 John 33.0 True
4 Myla 26.0 False
Notice the uncounted NA values:
>>> df.count()
Person 5
Age 4
Single 5
dtype: int64
Counts for each **row**:
>>> df.count(axis='columns')
0 3
1 2
2 3
3 3
4 3
dtype: int64
Compute pairwise covariance of columns, excluding NA/null values.
Compute the pairwise covariance among the series of a DataFrame.
The returned data frame is the `covariance matrix
<https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns
of the DataFrame.
Both NA and null values are automatically excluded from the
calculation. (See the note below about bias from missing values.)
A threshold can be set for the minimum number of
observations for each value created. Comparisons with observations
below this threshold will be returned as ``NaN``.
This method is generally used for the analysis of time series data to
understand the relationship between different measures
across time.
Parameters
----------
min_periods : int, optional
Minimum number of observations required per pair of columns
to have a valid result.
ddof : int, default 1
Delta degrees of freedom. The divisor used in calculations
is ``N - ddof``, where ``N`` represents the number of elements.
.. versionadded:: 1.1.0
numeric_only : bool, default True
Include only `float`, `int` or `boolean` data.
.. versionadded:: 1.5.0
.. deprecated:: 1.5.0
The default value of ``numeric_only`` will be ``False`` in a future
version of pandas.
Returns
-------
DataFrame
The covariance matrix of the series of the DataFrame.
See Also
--------
Series.cov : Compute covariance with another Series.
core.window.ewm.ExponentialMovingWindow.cov : Exponential weighted sample
covariance.
core.window.expanding.Expanding.cov : Expanding sample covariance.
core.window.rolling.Rolling.cov : Rolling sample covariance.
Notes
-----
Returns the covariance matrix of the DataFrame's time series.
The covariance is normalized by N-ddof.
For DataFrames that have Series that are missing data (assuming that
data is `missing at random
<https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__)
the returned covariance matrix will be an unbiased estimate
of the variance and covariance between the member Series.
However, for many applications this estimate may not be acceptable
because the estimate covariance matrix is not guaranteed to be positive
semi-definite. This could lead to estimate correlations having
absolute values which are greater than one, and/or a non-invertible
covariance matrix. See `Estimation of covariance matrices
<https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_
matrices>`__ for more details.
Examples
--------
>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)],
... columns=['dogs', 'cats'])
>>> df.cov()
dogs cats
dogs 0.666667 -1.000000
cats -1.000000 1.666667
>>> np.random.seed(42)
>>> df = pd.DataFrame(np.random.randn(1000, 5),
... columns=['a', 'b', 'c', 'd', 'e'])
>>> df.cov()
a b c d e
a 0.998438 -0.020161 0.059277 -0.008943 0.014144
b -0.020161 1.059352 -0.008543 -0.024738 0.009826
c 0.059277 -0.008543 1.010670 -0.001486 -0.000271
d -0.008943 -0.024738 -0.001486 0.921297 -0.013692
e 0.014144 0.009826 -0.000271 -0.013692 0.977795
**Minimum number of periods**
This method also supports an optional ``min_periods`` keyword
that specifies the required minimum number of non-NA observations for
each column pair in order to have a valid result:
>>> np.random.seed(42)
>>> df = pd.DataFrame(np.random.randn(20, 3),
... columns=['a', 'b', 'c'])
>>> df.loc[df.index[:5], 'a'] = np.nan
>>> df.loc[df.index[5:10], 'b'] = np.nan
>>> df.cov(min_periods=12)
a b c
a 0.316741 NaN -0.150812
b NaN 1.248003 0.191417
c -0.150812 0.191417 0.895202
Return cumulative maximum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative
maximum.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The index or the name of the axis. 0 is equivalent to None or 'index'.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
*args, **kwargs
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
Series or DataFrame
Return cumulative maximum of Series or DataFrame.
See Also
--------
core.window.expanding.Expanding.max : Similar functionality
but ignores ``NaN`` values.
DataFrame.max : Return the maximum over
DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis.
DataFrame.cummin : Return cumulative minimum over DataFrame axis.
DataFrame.cumsum : Return cumulative sum over DataFrame axis.
DataFrame.cumprod : Return cumulative product over DataFrame axis.
Examples
--------
**Series**
>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64
By default, NA values are ignored.
>>> s.cummax()
0 2.0
1 NaN
2 5.0
3 5.0
4 5.0
dtype: float64
To include NA values in the operation, use ``skipna=False``
>>> s.cummax(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64
**DataFrame**
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the maximum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.
>>> df.cummax()
A B
0 2.0 1.0
1 3.0 NaN
2 3.0 1.0
To iterate over columns and find the maximum in each row,
use ``axis=1``
>>> df.cummax(axis=1)
A B
0 2.0 2.0
1 3.0 NaN
2 1.0 1.0
Return cumulative minimum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative
minimum.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The index or the name of the axis. 0 is equivalent to None or 'index'.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
*args, **kwargs
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
Series or DataFrame
Return cumulative minimum of Series or DataFrame.
See Also
--------
core.window.expanding.Expanding.min : Similar functionality
but ignores ``NaN`` values.
DataFrame.min : Return the minimum over
DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis.
DataFrame.cummin : Return cumulative minimum over DataFrame axis.
DataFrame.cumsum : Return cumulative sum over DataFrame axis.
DataFrame.cumprod : Return cumulative product over DataFrame axis.
Examples
--------
**Series**
>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64
By default, NA values are ignored.
>>> s.cummin()
0 2.0
1 NaN
2 2.0
3 -1.0
4 -1.0
dtype: float64
To include NA values in the operation, use ``skipna=False``
>>> s.cummin(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64
**DataFrame**
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the minimum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.
>>> df.cummin()
A B
0 2.0 1.0
1 2.0 NaN
2 1.0 0.0
To iterate over columns and find the minimum in each row,
use ``axis=1``
>>> df.cummin(axis=1)
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
Return cumulative product over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative
product.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The index or the name of the axis. 0 is equivalent to None or 'index'.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
*args, **kwargs
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
Series or DataFrame
Return cumulative product of Series or DataFrame.
See Also
--------
core.window.expanding.Expanding.prod : Similar functionality
but ignores ``NaN`` values.
DataFrame.prod : Return the product over
DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis.
DataFrame.cummin : Return cumulative minimum over DataFrame axis.
DataFrame.cumsum : Return cumulative sum over DataFrame axis.
DataFrame.cumprod : Return cumulative product over DataFrame axis.
Examples
--------
**Series**
>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64
By default, NA values are ignored.
>>> s.cumprod()
0 2.0
1 NaN
2 10.0
3 -10.0
4 -0.0
dtype: float64
To include NA values in the operation, use ``skipna=False``
>>> s.cumprod(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64
**DataFrame**
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the product
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.
>>> df.cumprod()
A B
0 2.0 1.0
1 6.0 NaN
2 6.0 0.0
To iterate over columns and find the product in each row,
use ``axis=1``
>>> df.cumprod(axis=1)
A B
0 2.0 2.0
1 3.0 NaN
2 1.0 0.0
Return cumulative sum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative
sum.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The index or the name of the axis. 0 is equivalent to None or 'index'.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
*args, **kwargs
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
Series or DataFrame
Return cumulative sum of Series or DataFrame.
See Also
--------
core.window.expanding.Expanding.sum : Similar functionality
but ignores ``NaN`` values.
DataFrame.sum : Return the sum over
DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis.
DataFrame.cummin : Return cumulative minimum over DataFrame axis.
DataFrame.cumsum : Return cumulative sum over DataFrame axis.
DataFrame.cumprod : Return cumulative product over DataFrame axis.
Examples
--------
**Series**
>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64
By default, NA values are ignored.
>>> s.cumsum()
0 2.0
1 NaN
2 7.0
3 6.0
4 6.0
dtype: float64
To include NA values in the operation, use ``skipna=False``
>>> s.cumsum(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64
**DataFrame**
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the sum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.
>>> df.cumsum()
A B
0 2.0 1.0
1 5.0 NaN
2 6.0 1.0
To iterate over columns and find the sum in each row,
use ``axis=1``
>>> df.cumsum(axis=1)
A B
0 2.0 3.0
1 3.0 NaN
2 1.0 1.0
Generate descriptive statistics.
Descriptive statistics include those that summarize the central
tendency, dispersion and shape of a
dataset's distribution, excluding ``NaN`` values.
Analyzes both numeric and object series, as well
as ``DataFrame`` column sets of mixed data types. The output
will vary depending on what is provided. Refer to the notes
below for more detail.
Parameters
----------
percentiles : list-like of numbers, optional
The percentiles to include in the output. All should
fall between 0 and 1. The default is
``[.25, .5, .75]``, which returns the 25th, 50th, and
75th percentiles.
include : 'all', list-like of dtypes or None (default), optional
A white list of data types to include in the result. Ignored
for ``Series``. Here are the options:
- 'all' : All columns of the input will be included in the output.
- A list-like of dtypes : Limits the results to the
provided data types.
To limit the result to numeric types submit
``numpy.number``. To limit it instead to object columns submit
the ``numpy.object`` data type. Strings
can also be used in the style of
``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To
select pandas categorical columns, use ``'category'``
- None (default) : The result will include all numeric columns.
exclude : list-like of dtypes or None (default), optional,
A black list of data types to omit from the result. Ignored
for ``Series``. Here are the options:
- A list-like of dtypes : Excludes the provided data types
from the result. To exclude numeric types submit
``numpy.number``. To exclude object columns submit the data
type ``numpy.object``. Strings can also be used in the style of
``select_dtypes`` (e.g. ``df.describe(exclude=['O'])``). To
exclude pandas categorical columns, use ``'category'``
- None (default) : The result will exclude nothing.
datetime_is_numeric : bool, default False
Whether to treat datetime dtypes as numeric. This affects statistics
calculated for the column. For DataFrame input, this also
controls whether datetime columns are included by default.
.. versionadded:: 1.1.0
Returns
-------
Series or DataFrame
Summary statistics of the Series or Dataframe provided.
See Also
--------
DataFrame.count: Count number of non-NA/null observations.
DataFrame.max: Maximum of the values in the object.
DataFrame.min: Minimum of the values in the object.
DataFrame.mean: Mean of the values.
DataFrame.std: Standard deviation of the observations.
DataFrame.select_dtypes: Subset of a DataFrame including/excluding
columns based on their dtype.
Notes
-----
For numeric data, the result's index will include ``count``,
``mean``, ``std``, ``min``, ``max`` as well as lower, ``50`` and
upper percentiles. By default the lower percentile is ``25`` and the
upper percentile is ``75``. The ``50`` percentile is the
same as the median.
For object data (e.g. strings or timestamps), the result's index
will include ``count``, ``unique``, ``top``, and ``freq``. The ``top``
is the most common value. The ``freq`` is the most common value's
frequency. Timestamps also include the ``first`` and ``last`` items.
If multiple object values have the highest count, then the
``count`` and ``top`` results will be arbitrarily chosen from
among those with the highest count.
For mixed data types provided via a ``DataFrame``, the default is to
return only an analysis of numeric columns. If the dataframe consists
only of object and categorical data without any numeric columns, the
default is to return an analysis of both the object and categorical
columns. If ``include='all'`` is provided as an option, the result
will include a union of attributes of each type.
The `include` and `exclude` parameters can be used to limit
which columns in a ``DataFrame`` are analyzed for the output.
The parameters are ignored when analyzing a ``Series``.
Examples
--------
Describing a numeric ``Series``.
>>> s = pd.Series([1, 2, 3])
>>> s.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
dtype: float64
Describing a categorical ``Series``.
>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count 4
unique 3
top a
freq 2
dtype: object
Describing a timestamp ``Series``.
>>> s = pd.Series([
... np.datetime64("2000-01-01"),
... np.datetime64("2010-01-01"),
... np.datetime64("2010-01-01")
... ])
>>> s.describe(datetime_is_numeric=True)
count 3
mean 2006-09-01 08:00:00
min 2000-01-01 00:00:00
25% 2004-12-31 12:00:00
50% 2010-01-01 00:00:00
75% 2010-01-01 00:00:00
max 2010-01-01 00:00:00
dtype: object
Describing a ``DataFrame``. By default only numeric fields
are returned.
>>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']),
... 'numeric': [1, 2, 3],
... 'object': ['a', 'b', 'c']
... })
>>> df.describe()
numeric
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Describing all columns of a ``DataFrame`` regardless of data type.
>>> df.describe(include='all') # doctest: +SKIP
categorical numeric object
count 3 3.0 3
unique 3 NaN 3
top f NaN a
freq 1 NaN 1
mean NaN 2.0 NaN
std NaN 1.0 NaN
min NaN 1.0 NaN
25% NaN 1.5 NaN
50% NaN 2.0 NaN
75% NaN 2.5 NaN
max NaN 3.0 NaN
Describing a column from a ``DataFrame`` by accessing it as
an attribute.
>>> df.numeric.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Name: numeric, dtype: float64
Including only numeric columns in a ``DataFrame`` description.
>>> df.describe(include=[np.number])
numeric
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Including only string columns in a ``DataFrame`` description.
>>> df.describe(include=[object]) # doctest: +SKIP
object
count 3
unique 3
top a
freq 1
Including only categorical columns from a ``DataFrame`` description.
>>> df.describe(include=['category'])
categorical
count 3
unique 3
top d
freq 1
Excluding numeric columns from a ``DataFrame`` description.
>>> df.describe(exclude=[np.number]) # doctest: +SKIP
categorical object
count 3 3
unique 3 3
top f a
freq 1 1
Excluding object columns from a ``DataFrame`` description.
>>> df.describe(exclude=[object]) # doctest: +SKIP
categorical numeric
count 3 3.0
unique 3 NaN
top f NaN
freq 1 NaN
mean NaN 2.0
std NaN 1.0
min NaN 1.0
25% NaN 1.5
50% NaN 2.0
75% NaN 2.5
max NaN 3.0
First discrete difference of element.
Calculates the difference of a DataFrame element compared with another
element in the DataFrame (default is element in previous row).
Parameters
----------
periods : int, default 1
Periods to shift for calculating difference, accepts negative
values.
axis : {0 or 'index', 1 or 'columns'}, default 0
Take difference over rows (0) or columns (1).
Returns
-------
DataFrame
First differences of the Series.
See Also
--------
DataFrame.pct_change: Percent change over given number of periods.
DataFrame.shift: Shift index by desired number of periods with an
optional time freq.
Series.diff: First discrete difference of object.
Notes
-----
For boolean dtypes, this uses :meth:`operator.xor` rather than
:meth:`operator.sub`.
The result is calculated according to current dtype in DataFrame,
however dtype of the result is always float64.
Examples
--------
Difference with previous row
>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],
... 'b': [1, 1, 2, 3, 5, 8],
... 'c': [1, 4, 9, 16, 25, 36]})
>>> df
a b c
0 1 1 1
1 2 1 4
2 3 2 9
3 4 3 16
4 5 5 25
5 6 8 36
>>> df.diff()
a b c
0 NaN NaN NaN
1 1.0 0.0 3.0
2 1.0 1.0 5.0
3 1.0 1.0 7.0
4 1.0 2.0 9.0
5 1.0 3.0 11.0
Difference with previous column
>>> df.diff(axis=1)
a b c
0 NaN 0 0
1 NaN -1 3
2 NaN -1 7
3 NaN -1 13
4 NaN 0 20
5 NaN 2 28
Difference with 3rd previous row
>>> df.diff(periods=3)
a b c
0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 3.0 2.0 15.0
4 3.0 4.0 21.0
5 3.0 6.0 27.0
Difference with following row
>>> df.diff(periods=-1)
a b c
0 -1.0 0.0 -3.0
1 -1.0 -1.0 -5.0
2 -1.0 -1.0 -7.0
3 -1.0 -2.0 -9.0
4 -1.0 -3.0 -11.0
5 NaN NaN NaN
Overflow in input dtype
>>> df = pd.DataFrame({'a': [1, 0]}, dtype=np.uint8)
>>> df.diff()
a
0 NaN
1 255.0
Get Floating division of dataframe and other, element-wise (binary operator `truediv`).
Equivalent to ``dataframe / other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rtruediv`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Get Floating division of dataframe and other, element-wise (binary operator `truediv`).
Equivalent to ``dataframe / other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rtruediv`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Compute the matrix multiplication between the DataFrame and other.
This method computes the matrix product between the DataFrame and the
values of an other Series, DataFrame or a numpy array.
It can also be called using ``self @ other`` in Python >= 3.5.
Parameters
----------
other : Series, DataFrame or array-like
The other object to compute the matrix product with.
Returns
-------
Series or DataFrame
If other is a Series, return the matrix product between self and
other as a Series. If other is a DataFrame or a numpy.array, return
the matrix product of self and other in a DataFrame of a np.array.
See Also
--------
Series.dot: Similar method for Series.
Notes
-----
The dimensions of DataFrame and other must be compatible in order to
compute the matrix multiplication. In addition, the column names of
DataFrame and the index of other must contain the same values, as they
will be aligned prior to the multiplication.
The dot method for Series computes the inner product, instead of the
matrix product here.
Examples
--------
Here we multiply a DataFrame with a Series.
>>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]])
>>> s = pd.Series([1, 1, 2, 1])
>>> df.dot(s)
0 -4
1 5
dtype: int64
Here we multiply a DataFrame with another DataFrame.
>>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(other)
0 1
0 1 4
1 2 2
Note that the dot method give the same result as @
>>> df @ other
0 1
0 1 4
1 2 2
The dot method works also if other is an np.array.
>>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]])
>>> df.dot(arr)
0 1
0 1 4
1 2 2
Note how shuffling of the objects does not change the result.
>>> s2 = s.reindex([1, 0, 2, 3])
>>> df.dot(s2)
0 -4
1 5
dtype: int64
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding
axis, or by specifying directly index or column names. When using a
multi-index, labels on different levels can be removed by specifying
the level. See the `user guide <advanced.shown_levels>`
for more information about the now unused levels.
Parameters
----------
labels : single label or list-like
Index or column labels to drop. A tuple will be used as a single
label and not treated as a list-like.
axis : {0 or 'index', 1 or 'columns'}, default 0
Whether to drop labels from the index (0 or 'index') or
columns (1 or 'columns').
index : single label or list-like
Alternative to specifying axis (``labels, axis=0``
is equivalent to ``index=labels``).
columns : single label or list-like
Alternative to specifying axis (``labels, axis=1``
is equivalent to ``columns=labels``).
level : int or level name, optional
For MultiIndex, level from which the labels will be removed.
inplace : bool, default False
If False, return a copy. Otherwise, do operation
inplace and return None.
errors : {'ignore', 'raise'}, default 'raise'
If 'ignore', suppress error and only existing labels are
dropped.
Returns
-------
DataFrame or None
DataFrame without the removed index or column labels or
None if ``inplace=True``.
Raises
------
KeyError
If any of the labels is not found in the selected axis.
See Also
--------
DataFrame.loc : Label-location based indexer for selection by label.
DataFrame.dropna : Return DataFrame with labels on given axis omitted
where (all or any) data are missing.
DataFrame.drop_duplicates : Return DataFrame with duplicate rows
removed, optionally only considering certain columns.
Series.drop : Return Series with specified index labels removed.
Examples
--------
>>> df = pd.DataFrame(np.arange(12).reshape(3, 4),
... columns=['A', 'B', 'C', 'D'])
>>> df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Drop columns
>>> df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
>>> df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
Drop a row by index
>>> df.drop([0, 1])
A B C D
2 8 9 10 11
Drop columns and/or rows of MultiIndex DataFrame
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
... data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
... [250, 150], [1.5, 0.8], [320, 250],
... [1, 0.8], [0.3, 0.2]])
>>> df
big small
lama speed 45.0 30.0
weight 200.0 100.0
length 1.5 1.0
cow speed 30.0 20.0
weight 250.0 150.0
length 1.5 0.8
falcon speed 320.0 250.0
weight 1.0 0.8
length 0.3 0.2
Drop a specific index combination from the MultiIndex
DataFrame, i.e., drop the combination ``'falcon'`` and
``'weight'``, which deletes only the corresponding row
>>> df.drop(index=('falcon', 'weight'))
big small
lama speed 45.0 30.0
weight 200.0 100.0
length 1.5 1.0
cow speed 30.0 20.0
weight 250.0 150.0
length 1.5 0.8
falcon speed 320.0 250.0
length 0.3 0.2
>>> df.drop(index='cow', columns='small')
big
lama speed 45.0
weight 200.0
length 1.5
falcon speed 320.0
weight 1.0
length 0.3
>>> df.drop(index='length', level=1)
big small
lama speed 45.0 30.0
weight 200.0 100.0
cow speed 30.0 20.0
weight 250.0 150.0
falcon speed 320.0 250.0
weight 1.0 0.8
Return DataFrame with duplicate rows removed.
Considering certain columns is optional. Indexes, including time indexes
are ignored.
Parameters
----------
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by
default use all of the columns.
keep : {'first', 'last', False}, default 'first'
Determines which duplicates (if any) to keep.
- ``first`` : Drop duplicates except for the first occurrence.
- ``last`` : Drop duplicates except for the last occurrence.
- False : Drop all duplicates.
inplace : bool, default False
Whether to modify the DataFrame rather than creating a new one.
ignore_index : bool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
.. versionadded:: 1.0.0
Returns
-------
DataFrame or None
DataFrame with duplicates removed or None if ``inplace=True``.
See Also
--------
DataFrame.value_counts: Count unique combinations of columns.
Examples
--------
Consider dataset containing ramen rating.
>>> df = pd.DataFrame({
... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
... 'rating': [4, 4, 3.5, 15, 5]
... })
>>> df
brand style rating
0 Yum Yum cup 4.0
1 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
By default, it removes duplicate rows based on all columns.
>>> df.drop_duplicates()
brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
To remove duplicates on specific column(s), use ``subset``.
>>> df.drop_duplicates(subset=['brand'])
brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
To remove duplicates and keep last occurrences, use ``keep``.
>>> df.drop_duplicates(subset=['brand', 'style'], keep='last')
brand style rating
1 Yum Yum cup 4.0
2 Indomie cup 3.5
4 Indomie pack 5.0
Return Series/DataFrame with requested index / column level(s) removed.
Parameters
----------
level : int, str, or list-like
If a string is given, must be the name of a level
If list-like, elements must be names or positional indexes
of levels.
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis along which the level(s) is removed:
* 0 or 'index': remove level(s) in column.
* 1 or 'columns': remove level(s) in row.
For `Series` this parameter is unused and defaults to 0.
Returns
-------
Series/DataFrame
Series/DataFrame with requested index / column level(s) removed.
Examples
--------
>>> df = pd.DataFrame([
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12]
... ]).set_index([0, 1]).rename_axis(['a', 'b'])
>>> df.columns = pd.MultiIndex.from_tuples([
... ('c', 'e'), ('d', 'f')
... ], names=['level_1', 'level_2'])
>>> df
level_1 c d
level_2 e f
a b
1 2 3 4
5 6 7 8
9 10 11 12
>>> df.droplevel('a')
level_1 c d
level_2 e f
b
2 3 4
6 7 8
10 11 12
>>> df.droplevel('level_2', axis=1)
level_1 c d
a b
1 2 3 4
5 6 7 8
9 10 11 12
Remove missing values.
See the :ref:`User Guide <missing_data>` for more on which values are
considered missing, and how to work with missing data.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
Determine if rows or columns which contain missing values are
removed.
* 0, or 'index' : Drop rows which contain missing values.
* 1, or 'columns' : Drop columns which contain missing value.
.. versionchanged:: 1.0.0
Pass tuple or list to drop on multiple axes.
Only a single axis is allowed.
how : {'any', 'all'}, default 'any'
Determine if row or column is removed from DataFrame, when we have
at least one NA or all NA.
* 'any' : If any NA values are present, drop that row or column.
* 'all' : If all values are NA, drop that row or column.
thresh : int, optional
Require that many non-NA values. Cannot be combined with how.
subset : column label or sequence of labels, optional
Labels along other axis to consider, e.g. if you are dropping rows
these would be a list of columns to include.
inplace : bool, default False
Whether to modify the DataFrame rather than creating a new one.
Returns
-------
DataFrame or None
DataFrame with NA entries dropped from it or None if ``inplace=True``.
See Also
--------
DataFrame.isna: Indicate missing values.
DataFrame.notna : Indicate existing (non-missing) values.
DataFrame.fillna : Replace missing values.
Series.dropna : Drop missing values.
Index.dropna : Drop missing indices.
Examples
--------
>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
... pd.NaT]})
>>> df
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Drop the rows where at least one element is missing.
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25
Drop the columns where at least one element is missing.
>>> df.dropna(axis='columns')
name
0 Alfred
1 Batman
2 Catwoman
Drop the rows where all elements are missing.
>>> df.dropna(how='all')
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Keep only the rows with at least 2 non-NA values.
>>> df.dropna(thresh=2)
name toy born
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Define in which columns to look for missing values.
>>> df.dropna(subset=['name', 'toy'])
name toy born
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True)
>>> df
name toy born
1 Batman Batmobile 1940-04-25
One-dimensional ndarray with axis labels (including time series).
Labels need not be unique but must be a hashable type. The object
supports both integer- and label-based indexing and provides a host of
methods for performing operations involving the index. Statistical
methods from ndarray have been overridden to automatically exclude
missing data (currently represented as NaN).
Operations between Series (+, -, /, \*, \*\*) align values based on their
associated index values-- they need not be the same length. The result
index will be the sorted union of the two indexes.
Parameters
----------
data : array-like, Iterable, dict, or scalar value
Contains data stored in Series. If data is a dict, argument order is
maintained.
index : array-like or Index (1d)
Values must be hashable and have the same length as `data`.
Non-unique index values are allowed. Will default to
RangeIndex (0, 1, 2, ..., n) if not provided. If data is dict-like
and index is None, then the keys in the data are used as the index. If the
index is not None, the resulting Series is reindexed with the index values.
dtype : str, numpy.dtype, or ExtensionDtype, optional
Data type for the output Series. If not specified, this will be
inferred from `data`.
See the :ref:`user guide <basics.dtypes>` for more usages.
name : str, optional
The name to give to the Series.
copy : bool, default False
Copy input data. Only affects Series or 1d ndarray input. See examples.
Notes
-----
Please reference the :ref:`User Guide <basics.series>` for more information.
Examples
--------
Constructing Series from a dictionary with an Index specified
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> ser = pd.Series(data=d, index=['a', 'b', 'c'])
>>> ser
a 1
b 2
c 3
dtype: int64
The keys of the dictionary match with the Index values, hence the Index
values have no effect.
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> ser = pd.Series(data=d, index=['x', 'y', 'z'])
>>> ser
x NaN
y NaN
z NaN
dtype: float64
Note that the Index is first build with the keys from the dictionary.
After this the Series is reindexed with the given Index values, hence we
get all NaN as a result.
Constructing Series from a list with `copy=False`.
>>> r = [1, 2]
>>> ser = pd.Series(r, copy=False)
>>> ser.iloc[0] = 999
>>> r
[1, 2]
>>> ser
0 999
1 2
dtype: int64
Due to input data type the Series has a `copy` of
the original data even though `copy=False`, so
the data is unchanged.
Constructing Series from a 1d ndarray with `copy=False`.
>>> r = np.array([1, 2])
>>> ser = pd.Series(r, copy=False)
>>> ser.iloc[0] = 999
>>> r
array([999, 2])
>>> ser
0 999
1 2
dtype: int64
Due to input data type the Series has a `view` on
the original data, so
the data is changed as well.
Return boolean Series denoting duplicate rows.
Considering certain columns is optional.
Parameters
----------
subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by
default use all of the columns.
keep : {'first', 'last', False}, default 'first'
Determines which duplicates (if any) to mark.
- ``first`` : Mark duplicates as ``True`` except for the first occurrence.
- ``last`` : Mark duplicates as ``True`` except for the last occurrence.
- False : Mark all duplicates as ``True``.
Returns
-------
Series
Boolean series for each duplicated rows.
See Also
--------
Index.duplicated : Equivalent method on index.
Series.duplicated : Equivalent method on Series.
Series.drop_duplicates : Remove duplicate values from Series.
DataFrame.drop_duplicates : Remove duplicate values from DataFrame.
Examples
--------
Consider dataset containing ramen rating.
>>> df = pd.DataFrame({
... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
... 'rating': [4, 4, 3.5, 15, 5]
... })
>>> df
brand style rating
0 Yum Yum cup 4.0
1 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
By default, for each set of duplicated values, the first occurrence
is set on False and all others on True.
>>> df.duplicated()
0 False
1 True
2 False
3 False
4 False
dtype: bool
By using 'last', the last occurrence of each set of duplicated values
is set on False and all others on True.
>>> df.duplicated(keep='last')
0 True
1 False
2 False
3 False
4 False
dtype: bool
By setting ``keep`` on False, all duplicates are True.
>>> df.duplicated(keep=False)
0 True
1 True
2 False
3 False
4 False
dtype: bool
To find duplicates on specific column(s), use ``subset``.
>>> df.duplicated(subset=['brand'])
0 False
1 True
2 False
3 True
4 True
dtype: bool
bool(x) -> bool Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
Get Equal to of dataframe and other, element-wise (binary operator `eq`).
Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.
Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.
Parameters
----------
other : scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns
(1 or 'columns').
level : int or label
Broadcast across a level, matching Index values on the passed
MultiIndex level.
Returns
-------
DataFrame of bool
Result of the comparison.
See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
inequality elementwise.
Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).
Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df
cost revenue
A 250 100
B 150 250
C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100
cost revenue
A False True
B False False
C True False
>>> df.eq(100)
cost revenue
A False True
B False False
C True False
When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:
>>> df != pd.Series([100, 250], index=["cost", "revenue"])
cost revenue
A True True
B True False
C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
cost revenue
A True False
B True True
C True True
D True True
When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:
>>> df == [250, 100]
cost revenue
A True True
B False False
C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index')
cost revenue
A True False
B False True
C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
... index=['A', 'B', 'C', 'D'])
>>> other
revenue
A 300
B 250
C 100
D 150
>>> df.gt(other)
cost revenue
A False False
B False False
C False True
D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
cost revenue
Q1 A 250 100
B 150 250
C 100 300
Q2 A 150 200
B 300 175
C 220 225
>>> df.le(df_multindex, level=1)
cost revenue
Q1 A True True
B True True
C True True
Q2 A False True
B True False
C True False
Test whether two objects contain the same elements.
This function allows two Series or DataFrames to be compared against
each other to see if they have the same shape and elements. NaNs in
the same location are considered equal.
The row/column index do not need to have the same type, as long
as the values are considered equal. Corresponding columns must be of
the same dtype.
Parameters
----------
other : Series or DataFrame
The other Series or DataFrame to be compared with the first.
Returns
-------
bool
True if all elements are the same in both objects, False
otherwise.
See Also
--------
Series.eq : Compare two Series objects of the same length
and return a Series where each element is True if the element
in each Series is equal, False otherwise.
DataFrame.eq : Compare two DataFrame objects of the same shape and
return a DataFrame where each element is True if the respective
element in each DataFrame is equal, False otherwise.
testing.assert_series_equal : Raises an AssertionError if left and
right are not equal. Provides an easy interface to ignore
inequality in dtypes, indexes and precision among others.
testing.assert_frame_equal : Like assert_series_equal, but targets
DataFrames.
numpy.array_equal : Return True if two arrays have the same shape
and elements, False otherwise.
Examples
--------
>>> df = pd.DataFrame({1: [10], 2: [20]})
>>> df
1 2
0 10 20
DataFrames df and exactly_equal have the same types and values for
their elements and column labels, which will return True.
>>> exactly_equal = pd.DataFrame({1: [10], 2: [20]})
>>> exactly_equal
1 2
0 10 20
>>> df.equals(exactly_equal)
True
DataFrames df and different_column_type have the same element
types and values, but have different types for the column labels,
which will still return True.
>>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]})
>>> different_column_type
1.0 2.0
0 10 20
>>> df.equals(different_column_type)
True
DataFrames df and different_data_type have different types for the
same values for their elements, and will return False even though
their column labels are the same values and types.
>>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]})
>>> different_data_type
1 2
0 10.0 20.0
>>> df.equals(different_data_type)
False
Evaluate a string describing operations on DataFrame columns.
Operates on columns only, not specific rows or elements. This allows
`eval` to run arbitrary code, which can make you vulnerable to code
injection if you pass user input to this function.
Parameters
----------
expr : str
The expression string to evaluate.
inplace : bool, default False
If the expression contains an assignment, whether to perform the
operation inplace and mutate the existing DataFrame. Otherwise,
a new DataFrame is returned.
**kwargs
See the documentation for :func:`eval` for complete details
on the keyword arguments accepted by
:meth:`~pandas.DataFrame.query`.
Returns
-------
ndarray, scalar, pandas object, or None
The result of the evaluation or None if ``inplace=True``.
See Also
--------
DataFrame.query : Evaluates a boolean expression to query the columns
of a frame.
DataFrame.assign : Can evaluate an expression or function to create new
values for a column.
eval : Evaluate a Python expression as a string using various
backends.
Notes
-----
For more details see the API documentation for :func:`~eval`.
For detailed examples see :ref:`enhancing performance with eval
<enhancingperf.eval>`.
Examples
--------
>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})
>>> df
A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2
>>> df.eval('A + B')
0 11
1 10
2 9
3 8
4 7
dtype: int64
Assignment is allowed though by default the original DataFrame is not
modified.
>>> df.eval('C = A + B')
A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
>>> df
A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2
Use ``inplace=True`` to modify the original DataFrame.
>>> df.eval('C = A + B', inplace=True)
>>> df
A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
Multiple columns can be assigned to using multi-line expressions:
>>> df.eval(
... '''
... C = A + B
... D = A - B
... '''
... )
A B C D
0 1 10 11 -9
1 2 8 10 -6
2 3 6 9 -3
3 4 4 8 0
4 5 2 7 3
Provide exponentially weighted (EW) calculations.
Exactly one of ``com``, ``span``, ``halflife``, or ``alpha`` must be
provided if ``times`` is not provided. If ``times`` is provided,
``halflife`` and one of ``com``, ``span`` or ``alpha`` may be provided.
Parameters
----------
com : float, optional
Specify decay in terms of center of mass
:math:`\alpha = 1 / (1 + com)`, for :math:`com \geq 0`.
span : float, optional
Specify decay in terms of span
:math:`\alpha = 2 / (span + 1)`, for :math:`span \geq 1`.
halflife : float, str, timedelta, optional
Specify decay in terms of half-life
:math:`\alpha = 1 - \exp\left(-\ln(2) / halflife\right)`, for
:math:`halflife > 0`.
If ``times`` is specified, a timedelta convertible unit over which an
observation decays to half its value. Only applicable to ``mean()``,
and halflife value will not apply to the other functions.
.. versionadded:: 1.1.0
alpha : float, optional
Specify smoothing factor :math:`\alpha` directly
:math:`0 < \alpha \leq 1`.
min_periods : int, default 0
Minimum number of observations in window required to have a value;
otherwise, result is ``np.nan``.
adjust : bool, default True
Divide by decaying adjustment factor in beginning periods to account
for imbalance in relative weightings (viewing EWMA as a moving average).
- When ``adjust=True`` (default), the EW function is calculated using weights
:math:`w_i = (1 - \alpha)^i`. For example, the EW moving average of the series
[:math:`x_0, x_1, ..., x_t`] would be:
.. math::
y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 -
\alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}
- When ``adjust=False``, the exponentially weighted function is calculated
recursively:
.. math::
\begin{split}
y_0 &= x_0\\
y_t &= (1 - \alpha) y_{t-1} + \alpha x_t,
\end{split}
ignore_na : bool, default False
Ignore missing values when calculating weights.
- When ``ignore_na=False`` (default), weights are based on absolute positions.
For example, the weights of :math:`x_0` and :math:`x_2` used in calculating
the final weighted average of [:math:`x_0`, None, :math:`x_2`] are
:math:`(1-\alpha)^2` and :math:`1` if ``adjust=True``, and
:math:`(1-\alpha)^2` and :math:`\alpha` if ``adjust=False``.
- When ``ignore_na=True``, weights are based
on relative positions. For example, the weights of :math:`x_0` and :math:`x_2`
used in calculating the final weighted average of
[:math:`x_0`, None, :math:`x_2`] are :math:`1-\alpha` and :math:`1` if
``adjust=True``, and :math:`1-\alpha` and :math:`\alpha` if ``adjust=False``.
axis : {0, 1}, default 0
If ``0`` or ``'index'``, calculate across the rows.
If ``1`` or ``'columns'``, calculate across the columns.
For `Series` this parameter is unused and defaults to 0.
times : str, np.ndarray, Series, default None
.. versionadded:: 1.1.0
Only applicable to ``mean()``.
Times corresponding to the observations. Must be monotonically increasing and
``datetime64[ns]`` dtype.
If 1-D array like, a sequence with the same shape as the observations.
.. deprecated:: 1.4.0
If str, the name of the column in the DataFrame representing the times.
method : str {'single', 'table'}, default 'single'
.. versionadded:: 1.4.0
Execute the rolling operation per single column or row (``'single'``)
or over the entire object (``'table'``).
This argument is only implemented when specifying ``engine='numba'``
in the method call.
Only applicable to ``mean()``
Returns
-------
``ExponentialMovingWindow`` subclass
See Also
--------
rolling : Provides rolling window calculations.
expanding : Provides expanding transformations.
Notes
-----
See :ref:`Windowing Operations <window.exponentially_weighted>`
for further usage details and examples.
Examples
--------
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0
>>> df.ewm(com=0.5).mean()
B
0 0.000000
1 0.750000
2 1.615385
3 1.615385
4 3.670213
>>> df.ewm(alpha=2 / 3).mean()
B
0 0.000000
1 0.750000
2 1.615385
3 1.615385
4 3.670213
**adjust**
>>> df.ewm(com=0.5, adjust=True).mean()
B
0 0.000000
1 0.750000
2 1.615385
3 1.615385
4 3.670213
>>> df.ewm(com=0.5, adjust=False).mean()
B
0 0.000000
1 0.666667
2 1.555556
3 1.555556
4 3.650794
**ignore_na**
>>> df.ewm(com=0.5, ignore_na=True).mean()
B
0 0.000000
1 0.750000
2 1.615385
3 1.615385
4 3.225000
>>> df.ewm(com=0.5, ignore_na=False).mean()
B
0 0.000000
1 0.750000
2 1.615385
3 1.615385
4 3.670213
**times**
Exponentially weighted mean with weights calculated with a timedelta ``halflife``
relative to ``times``.
>>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17']
>>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean()
B
0 0.000000
1 0.585786
2 1.523889
3 1.523889
4 3.233686
Provide expanding window calculations.
Parameters
----------
min_periods : int, default 1
Minimum number of observations in window required to have a value;
otherwise, result is ``np.nan``.
center : bool, default False
If False, set the window labels as the right edge of the window index.
If True, set the window labels as the center of the window index.
.. deprecated:: 1.1.0
axis : int or str, default 0
If ``0`` or ``'index'``, roll across the rows.
If ``1`` or ``'columns'``, roll across the columns.
For `Series` this parameter is unused and defaults to 0.
method : str {'single', 'table'}, default 'single'
Execute the rolling operation per single column or row (``'single'``)
or over the entire object (``'table'``).
This argument is only implemented when specifying ``engine='numba'``
in the method call.
.. versionadded:: 1.3.0
Returns
-------
``Expanding`` subclass
See Also
--------
rolling : Provides rolling window calculations.
ewm : Provides exponential weighted functions.
Notes
-----
See :ref:`Windowing Operations <window.expanding>` for further usage details
and examples.
Examples
--------
>>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]})
>>> df
B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0
**min_periods**
Expanding sum with 1 vs 3 observations needed to calculate a value.
>>> df.expanding(1).sum()
B
0 0.0
1 1.0
2 3.0
3 3.0
4 7.0
>>> df.expanding(3).sum()
B
0 NaN
1 NaN
2 3.0
3 3.0
4 7.0
Transform each element of a list-like to a row, replicating index values.
.. versionadded:: 0.25.0
Parameters
----------
column : IndexLabel
Column(s) to explode.
For multiple columns, specify a non-empty list with each element
be str or tuple, and all specified columns their list-like data
on same row of the frame must have matching length.
.. versionadded:: 1.3.0
Multi-column explode
ignore_index : bool, default False
If True, the resulting index will be labeled 0, 1, …, n - 1.
.. versionadded:: 1.1.0
Returns
-------
DataFrame
Exploded lists to rows of the subset columns;
index will be duplicated for these rows.
Raises
------
ValueError :
* If columns of the frame are not unique.
* If specified columns to explode is empty list.
* If specified columns to explode have not matching count of
elements rowwise in the frame.
See Also
--------
DataFrame.unstack : Pivot a level of the (necessarily hierarchical)
index labels.
DataFrame.melt : Unpivot a DataFrame from wide format to long format.
Series.explode : Explode a DataFrame from list-like columns to long format.
Notes
-----
This routine will explode list-likes including lists, tuples, sets,
Series, and np.ndarray. The result dtype of the subset rows will
be object. Scalars will be returned unchanged, and empty list-likes will
result in a np.nan for that row. In addition, the ordering of rows in the
output will be non-deterministic when exploding sets.
Reference :ref:`the user guide <reshaping.explode>` for more examples.
Examples
--------
>>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]],
... 'B': 1,
... 'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]})
>>> df
A B C
0 [0, 1, 2] 1 [a, b, c]
1 foo 1 NaN
2 [] 1 []
3 [3, 4] 1 [d, e]
Single-column explode.
>>> df.explode('A')
A B C
0 0 1 [a, b, c]
0 1 1 [a, b, c]
0 2 1 [a, b, c]
1 foo 1 NaN
2 NaN 1 []
3 3 1 [d, e]
3 4 1 [d, e]
Multi-column explode.
>>> df.explode(list('AC'))
A B C
0 0 1 a
0 1 1 b
0 2 1 c
1 foo 1 NaN
2 NaN 1 NaN
3 3 1 d
3 4 1 e
None
Fill NA/NaN values using the specified method.
Parameters
----------
value : scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a
dict/Series/DataFrame of values specifying which value to use for
each index (for a Series) or column (for a DataFrame). Values not
in the dict/Series/DataFrame will not be filled. This value cannot
be a list.
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed Series
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use next valid observation to fill gap.
axis : {0 or 'index', 1 or 'columns'}
Axis along which to fill missing values. For `Series`
this parameter is unused and defaults to 0.
inplace : bool, default False
If True, fill in-place. Note: this will modify any
other views on this object (e.g., a no-copy slice for a column in a
DataFrame).
limit : int, default None
If method is specified, this is the maximum number of consecutive
NaN values to forward/backward fill. In other words, if there is
a gap with more than this number of consecutive NaNs, it will only
be partially filled. If method is not specified, this is the
maximum number of entries along the entire axis where NaNs will be
filled. Must be greater than 0 if not None.
downcast : dict, default is None
A dict of item->dtype of what to downcast if possible,
or the string 'infer' which will try to downcast to an appropriate
equal type (e.g. float64 to int64 if possible).
Returns
-------
DataFrame or None
Object with missing values filled or None if ``inplace=True``.
See Also
--------
interpolate : Fill NaN values using interpolation.
reindex : Conform object to new index.
asfreq : Convert TimeSeries to specified frequency.
Examples
--------
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, np.nan],
... [np.nan, 3, np.nan, 4]],
... columns=list("ABCD"))
>>> df
A B C D
0 NaN 2.0 NaN 0.0
1 3.0 4.0 NaN 1.0
2 NaN NaN NaN NaN
3 NaN 3.0 NaN 4.0
Replace all NaN elements with 0s.
>>> df.fillna(0)
A B C D
0 0.0 2.0 0.0 0.0
1 3.0 4.0 0.0 1.0
2 0.0 0.0 0.0 0.0
3 0.0 3.0 0.0 4.0
We can also propagate non-null values forward or backward.
>>> df.fillna(method="ffill")
A B C D
0 NaN 2.0 NaN 0.0
1 3.0 4.0 NaN 1.0
2 3.0 4.0 NaN 1.0
3 3.0 3.0 NaN 4.0
Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1,
2, and 3 respectively.
>>> values = {"A": 0, "B": 1, "C": 2, "D": 3}
>>> df.fillna(value=values)
A B C D
0 0.0 2.0 2.0 0.0
1 3.0 4.0 2.0 1.0
2 0.0 1.0 2.0 3.0
3 0.0 3.0 2.0 4.0
Only replace the first NaN element.
>>> df.fillna(value=values, limit=1)
A B C D
0 0.0 2.0 2.0 0.0
1 3.0 4.0 NaN 1.0
2 NaN 1.0 NaN 3.0
3 NaN 3.0 NaN 4.0
When filling using a DataFrame, replacement happens along
the same column names and same indices
>>> df2 = pd.DataFrame(np.zeros((4, 4)), columns=list("ABCE"))
>>> df.fillna(df2)
A B C D
0 0.0 2.0 0.0 0.0
1 3.0 4.0 0.0 1.0
2 0.0 0.0 0.0 NaN
3 0.0 3.0 0.0 4.0
Note that column D is not affected since it is not present in df2.
Subset the dataframe rows or columns according to the specified index labels.
Note that this routine does not filter a dataframe on its
contents. The filter is applied to the labels of the index.
Parameters
----------
items : list-like
Keep labels from axis which are in items.
like : str
Keep labels from axis for which "like in label == True".
regex : str (regular expression)
Keep labels from axis for which re.search(regex, label) == True.
axis : {0 or ‘index’, 1 or ‘columns’, None}, default None
The axis to filter on, expressed either as an index (int)
or axis name (str). By default this is the info axis, 'columns' for
DataFrame. For `Series` this parameter is unused and defaults to `None`.
Returns
-------
same type as input object
See Also
--------
DataFrame.loc : Access a group of rows and columns
by label(s) or a boolean array.
Notes
-----
The ``items``, ``like``, and ``regex`` parameters are
enforced to be mutually exclusive.
``axis`` defaults to the info axis that is used when indexing
with ``[]``.
Examples
--------
>>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])),
... index=['mouse', 'rabbit'],
... columns=['one', 'two', 'three'])
>>> df
one two three
mouse 1 2 3
rabbit 4 5 6
>>> # select columns by name
>>> df.filter(items=['one', 'three'])
one three
mouse 1 3
rabbit 4 6
>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
one three
mouse 1 3
rabbit 4 6
>>> # select rows containing 'bbi'
>>> df.filter(like='bbi', axis=0)
one two three
rabbit 4 5 6
Select initial periods of time series data based on a date offset.
When having a DataFrame with dates as index, this function can
select the first few rows based on a date offset.
Parameters
----------
offset : str, DateOffset or dateutil.relativedelta
The offset length of the data that will be selected. For instance,
'1M' will display all the rows having their index within the first month.
Returns
-------
Series or DataFrame
A subset of the caller.
Raises
------
TypeError
If the index is not a :class:`DatetimeIndex`
See Also
--------
last : Select final periods of time series based on a date offset.
at_time : Select values at a particular time of the day.
between_time : Select values between particular times of the day.
Examples
--------
>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
>>> ts
A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4
Get the rows for the first 3 days:
>>> ts.first('3D')
A
2018-04-09 1
2018-04-11 2
Notice the data for 3 first calendar days were returned, not the first
3 days observed in the dataset, and therefore data for 2018-04-13 was
not returned.
Return index for first non-NA value or None, if no non-NA value is found. Returns ------- scalar : type of index Notes ----- If all elements are non-NA/null, returns None. Also returns None for empty Series/DataFrame.
Flags that apply to pandas objects.
.. versionadded:: 1.2.0
Parameters
----------
obj : Series or DataFrame
The object these flags are associated with.
allows_duplicate_labels : bool, default True
Whether to allow duplicate labels in this object. By default,
duplicate labels are permitted. Setting this to ``False`` will
cause an :class:`errors.DuplicateLabelError` to be raised when
`index` (or columns for DataFrame) is not unique, or any
subsequent operation on introduces duplicates.
See :ref:`duplicates.disallow` for more.
.. warning::
This is an experimental feature. Currently, many methods fail to
propagate the ``allows_duplicate_labels`` value. In future versions
it is expected that every method taking or returning one or more
DataFrame or Series objects will propagate ``allows_duplicate_labels``.
Notes
-----
Attributes can be set in two ways
>>> df = pd.DataFrame()
>>> df.flags
<Flags(allows_duplicate_labels=True)>
>>> df.flags.allows_duplicate_labels = False
>>> df.flags
<Flags(allows_duplicate_labels=False)>
>>> df.flags['allows_duplicate_labels'] = True
>>> df.flags
<Flags(allows_duplicate_labels=True)>
Get Integer division of dataframe and other, element-wise (binary operator `floordiv`).
Equivalent to ``dataframe // other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rfloordiv`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index
allowing dtype specification.
Parameters
----------
data : dict
Of the form {field : array-like} or {field : dict}.
orient : {'columns', 'index', 'tight'}, default 'columns'
The "orientation" of the data. If the keys of the passed dict
should be the columns of the resulting DataFrame, pass 'columns'
(default). Otherwise if the keys should be rows, pass 'index'.
If 'tight', assume a dict with keys ['index', 'columns', 'data',
'index_names', 'column_names'].
.. versionadded:: 1.4.0
'tight' as an allowed value for the ``orient`` argument
dtype : dtype, default None
Data type to force, otherwise infer.
columns : list, default None
Column labels to use when ``orient='index'``. Raises a ValueError
if used with ``orient='columns'`` or ``orient='tight'``.
Returns
-------
DataFrame
See Also
--------
DataFrame.from_records : DataFrame from structured ndarray, sequence
of tuples or dicts, or DataFrame.
DataFrame : DataFrame object creation using constructor.
DataFrame.to_dict : Convert the DataFrame to a dictionary.
Examples
--------
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Specify ``orient='index'`` to create the DataFrame using dictionary
keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
When using the 'index' orientation, the column names can be
specified manually:
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d
Specify ``orient='tight'`` to create the DataFrame using a 'tight'
format:
>>> data = {'index': [('a', 'b'), ('a', 'c')],
... 'columns': [('x', 1), ('y', 2)],
... 'data': [[1, 3], [2, 4]],
... 'index_names': ['n1', 'n2'],
... 'column_names': ['z1', 'z2']}
>>> pd.DataFrame.from_dict(data, orient='tight')
z1 x y
z2 1 2
n1 n2
a b 1 3
c 2 4
Convert structured or record ndarray to DataFrame.
Creates a DataFrame object from a structured ndarray, sequence of
tuples or dicts, or DataFrame.
Parameters
----------
data : structured ndarray, sequence of tuples or dicts, or DataFrame
Structured input data.
index : str, list of fields, array-like
Field of array to use as the index, alternately a specific set of
input labels to use.
exclude : sequence, default None
Columns or fields to exclude.
columns : sequence, default None
Column names to use. If the passed data do not have names
associated with them, this argument provides names for the
columns. Otherwise this argument indicates the order of the columns
in the result (any names not found in the data will become all-NA
columns).
coerce_float : bool, default False
Attempt to convert values of non-string, non-numeric objects (like
decimal.Decimal) to floating point, useful for SQL result sets.
nrows : int, default None
Number of rows to read if data is an iterator.
Returns
-------
DataFrame
See Also
--------
DataFrame.from_dict : DataFrame from dict of array-like or dicts.
DataFrame : DataFrame object creation using constructor.
Examples
--------
Data can be provided as a structured ndarray:
>>> data = np.array([(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')],
... dtype=[('col_1', 'i4'), ('col_2', 'U1')])
>>> pd.DataFrame.from_records(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Data can be provided as a list of dicts:
>>> data = [{'col_1': 3, 'col_2': 'a'},
... {'col_1': 2, 'col_2': 'b'},
... {'col_1': 1, 'col_2': 'c'},
... {'col_1': 0, 'col_2': 'd'}]
>>> pd.DataFrame.from_records(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Data can be provided as a list of tuples with corresponding columns:
>>> data = [(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')]
>>> pd.DataFrame.from_records(data, columns=['col_1', 'col_2'])
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Get Greater than or equal to of dataframe and other, element-wise (binary operator `ge`).
Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.
Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.
Parameters
----------
other : scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns
(1 or 'columns').
level : int or label
Broadcast across a level, matching Index values on the passed
MultiIndex level.
Returns
-------
DataFrame of bool
Result of the comparison.
See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
inequality elementwise.
Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).
Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df
cost revenue
A 250 100
B 150 250
C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100
cost revenue
A False True
B False False
C True False
>>> df.eq(100)
cost revenue
A False True
B False False
C True False
When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:
>>> df != pd.Series([100, 250], index=["cost", "revenue"])
cost revenue
A True True
B True False
C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
cost revenue
A True False
B True True
C True True
D True True
When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:
>>> df == [250, 100]
cost revenue
A True True
B False False
C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index')
cost revenue
A True False
B False True
C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
... index=['A', 'B', 'C', 'D'])
>>> other
revenue
A 300
B 250
C 100
D 150
>>> df.gt(other)
cost revenue
A False False
B False False
C False True
D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
cost revenue
Q1 A 250 100
B 150 250
C 100 300
Q2 A 150 200
B 300 175
C 220 225
>>> df.le(df_multindex, level=1)
cost revenue
Q1 A True True
B True True
C True True
Q2 A False True
B True False
C True False
Get item from object for given key (ex: DataFrame column).
Returns default value if not found.
Parameters
----------
key : object
Returns
-------
value : same type as items contained in object
Examples
--------
>>> df = pd.DataFrame(
... [
... [24.3, 75.7, "high"],
... [31, 87.8, "high"],
... [22, 71.6, "medium"],
... [35, 95, "medium"],
... ],
... columns=["temp_celsius", "temp_fahrenheit", "windspeed"],
... index=pd.date_range(start="2014-02-12", end="2014-02-15", freq="D"),
... )
>>> df
temp_celsius temp_fahrenheit windspeed
2014-02-12 24.3 75.7 high
2014-02-13 31.0 87.8 high
2014-02-14 22.0 71.6 medium
2014-02-15 35.0 95.0 medium
>>> df.get(["temp_celsius", "windspeed"])
temp_celsius windspeed
2014-02-12 24.3 high
2014-02-13 31.0 high
2014-02-14 22.0 medium
2014-02-15 35.0 medium
If the key isn't found, the default value will be used.
>>> df.get(["temp_celsius", "temp_kelvin"], default="default_value")
'default_value'
Group DataFrame using a mapper or by a Series of columns.
A groupby operation involves some combination of splitting the
object, applying a function, and combining the results. This can be
used to group large amounts of data and compute operations on these
groups.
Parameters
----------
by : mapping, function, label, or list of labels
Used to determine the groups for the groupby.
If ``by`` is a function, it's called on each value of the object's
index. If a dict or Series is passed, the Series or dict VALUES
will be used to determine the groups (the Series' values are first
aligned; see ``.align()`` method). If a list or ndarray of length
equal to the selected axis is passed (see the `groupby user guide
<https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#splitting-an-object-into-groups>`_),
the values are used as-is to determine the groups. A label or list
of labels may be passed to group by the columns in ``self``.
Notice that a tuple is interpreted as a (single) key.
axis : {0 or 'index', 1 or 'columns'}, default 0
Split along rows (0) or columns (1). For `Series` this parameter
is unused and defaults to 0.
level : int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular
level or levels. Do not specify both ``by`` and ``level``.
as_index : bool, default True
For aggregated output, return object with group labels as the
index. Only relevant for DataFrame input. as_index=False is
effectively "SQL-style" grouped output.
sort : bool, default True
Sort group keys. Get better performance by turning this off.
Note this does not influence the order of observations within each
group. Groupby preserves the order of rows within each group.
group_keys : bool, optional
When calling apply and the ``by`` argument produces a like-indexed
(i.e. :ref:`a transform <groupby.transform>`) result, add group keys to
index to identify pieces. By default group keys are not included
when the result's index (and column) labels match the inputs, and
are included otherwise. This argument has no effect if the result produced
is not like-indexed with respect to the input.
.. versionchanged:: 1.5.0
Warns that `group_keys` will no longer be ignored when the
result from ``apply`` is a like-indexed Series or DataFrame.
Specify ``group_keys`` explicitly to include the group keys or
not.
squeeze : bool, default False
Reduce the dimensionality of the return type if possible,
otherwise return a consistent type.
.. deprecated:: 1.1.0
observed : bool, default False
This only applies if any of the groupers are Categoricals.
If True: only show observed values for categorical groupers.
If False: show all values for categorical groupers.
dropna : bool, default True
If True, and if group keys contain NA values, NA values together
with row/column will be dropped.
If False, NA values will also be treated as the key in groups.
.. versionadded:: 1.1.0
Returns
-------
DataFrameGroupBy
Returns a groupby object that contains information about the groups.
See Also
--------
resample : Convenience method for frequency conversion and resampling
of time series.
Notes
-----
See the `user guide
<https://pandas.pydata.org/pandas-docs/stable/groupby.html>`__ for more
detailed usage and examples, including splitting an object into groups,
iterating through groups, selecting a group, aggregation, and more.
Examples
--------
>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
... 'Parrot', 'Parrot'],
... 'Max Speed': [380., 370., 24., 26.]})
>>> df
Animal Max Speed
0 Falcon 380.0
1 Falcon 370.0
2 Parrot 24.0
3 Parrot 26.0
>>> df.groupby(['Animal']).mean()
Max Speed
Animal
Falcon 375.0
Parrot 25.0
**Hierarchical Indexes**
We can groupby different levels of a hierarchical index
using the `level` parameter:
>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'],
... ['Captive', 'Wild', 'Captive', 'Wild']]
>>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
>>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]},
... index=index)
>>> df
Max Speed
Animal Type
Falcon Captive 390.0
Wild 350.0
Parrot Captive 30.0
Wild 20.0
>>> df.groupby(level=0).mean()
Max Speed
Animal
Falcon 370.0
Parrot 25.0
>>> df.groupby(level="Type").mean()
Max Speed
Type
Captive 210.0
Wild 185.0
We can also choose to include NA in group keys or not by setting
`dropna` parameter, the default setting is `True`.
>>> l = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]
>>> df = pd.DataFrame(l, columns=["a", "b", "c"])
>>> df.groupby(by=["b"]).sum()
a c
b
1.0 2 3
2.0 2 5
>>> df.groupby(by=["b"], dropna=False).sum()
a c
b
1.0 2 3
2.0 2 5
NaN 1 4
>>> l = [["a", 12, 12], [None, 12.3, 33.], ["b", 12.3, 123], ["a", 1, 1]]
>>> df = pd.DataFrame(l, columns=["a", "b", "c"])
>>> df.groupby(by="a").sum()
b c
a
a 13.0 13.0
b 12.3 123.0
>>> df.groupby(by="a", dropna=False).sum()
b c
a
a 13.0 13.0
b 12.3 123.0
NaN 12.3 33.0
When using ``.apply()``, use ``group_keys`` to include or exclude the group keys.
The ``group_keys`` argument defaults to ``True`` (include).
>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
... 'Parrot', 'Parrot'],
... 'Max Speed': [380., 370., 24., 26.]})
>>> df.groupby("Animal", group_keys=True).apply(lambda x: x)
Animal Max Speed
Animal
Falcon 0 Falcon 380.0
1 Falcon 370.0
Parrot 2 Parrot 24.0
3 Parrot 26.0
>>> df.groupby("Animal", group_keys=False).apply(lambda x: x)
Animal Max Speed
0 Falcon 380.0
1 Falcon 370.0
2 Parrot 24.0
3 Parrot 26.0
Get Greater than of dataframe and other, element-wise (binary operator `gt`).
Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.
Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.
Parameters
----------
other : scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns
(1 or 'columns').
level : int or label
Broadcast across a level, matching Index values on the passed
MultiIndex level.
Returns
-------
DataFrame of bool
Result of the comparison.
See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
inequality elementwise.
Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).
Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df
cost revenue
A 250 100
B 150 250
C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100
cost revenue
A False True
B False False
C True False
>>> df.eq(100)
cost revenue
A False True
B False False
C True False
When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:
>>> df != pd.Series([100, 250], index=["cost", "revenue"])
cost revenue
A True True
B True False
C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
cost revenue
A True False
B True True
C True True
D True True
When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:
>>> df == [250, 100]
cost revenue
A True True
B False False
C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index')
cost revenue
A True False
B False True
C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
... index=['A', 'B', 'C', 'D'])
>>> other
revenue
A 300
B 250
C 100
D 150
>>> df.gt(other)
cost revenue
A False False
B False False
C False True
D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
cost revenue
Q1 A 250 100
B 150 250
C 100 300
Q2 A 150 200
B 300 175
C 220 225
>>> df.le(df_multindex, level=1)
cost revenue
Q1 A True True
B True True
C True True
Q2 A False True
B True False
C True False
Return the first `n` rows.
This function returns the first `n` rows for the object based
on position. It is useful for quickly testing if your object
has the right type of data in it.
For negative values of `n`, this function returns all rows except
the last `|n|` rows, equivalent to ``df[:n]``.
If n is larger than the number of rows, this function returns all rows.
Parameters
----------
n : int, default 5
Number of rows to select.
Returns
-------
same type as caller
The first `n` rows of the caller object.
See Also
--------
DataFrame.tail: Returns the last `n` rows.
Examples
--------
>>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion',
... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df
animal
0 alligator
1 bee
2 falcon
3 lion
4 monkey
5 parrot
6 shark
7 whale
8 zebra
Viewing the first 5 lines
>>> df.head()
animal
0 alligator
1 bee
2 falcon
3 lion
4 monkey
Viewing the first `n` lines (three in this case)
>>> df.head(3)
animal
0 alligator
1 bee
2 falcon
For negative values of `n`
>>> df.head(-3)
animal
0 alligator
1 bee
2 falcon
3 lion
4 monkey
5 parrot
Make a histogram of the DataFrame's columns.
A `histogram`_ is a representation of the distribution of data.
This function calls :meth:`matplotlib.pyplot.hist`, on each series in
the DataFrame, resulting in one histogram per column.
.. _histogram: https://en.wikipedia.org/wiki/Histogram
Parameters
----------
data : DataFrame
The pandas object holding the data.
column : str or sequence, optional
If passed, will be used to limit data to a subset of columns.
by : object, optional
If passed, then used to form histograms for separate groups.
grid : bool, default True
Whether to show axis grid lines.
xlabelsize : int, default None
If specified changes the x-axis label size.
xrot : float, default None
Rotation of x axis labels. For example, a value of 90 displays the
x labels rotated 90 degrees clockwise.
ylabelsize : int, default None
If specified changes the y-axis label size.
yrot : float, default None
Rotation of y axis labels. For example, a value of 90 displays the
y labels rotated 90 degrees clockwise.
ax : Matplotlib axes object, default None
The axes to plot the histogram on.
sharex : bool, default True if ax is None else False
In case subplots=True, share x axis and set some x axis labels to
invisible; defaults to True if ax is None otherwise False if an ax
is passed in.
Note that passing in both an ax and sharex=True will alter all x axis
labels for all subplots in a figure.
sharey : bool, default False
In case subplots=True, share y axis and set some y axis labels to
invisible.
figsize : tuple, optional
The size in inches of the figure to create. Uses the value in
`matplotlib.rcParams` by default.
layout : tuple, optional
Tuple of (rows, columns) for the layout of the histograms.
bins : int or sequence, default 10
Number of histogram bins to be used. If an integer is given, bins + 1
bin edges are calculated and returned. If bins is a sequence, gives
bin edges, including left edge of first bin and right edge of last
bin. In this case, bins is returned unmodified.
backend : str, default None
Backend to use instead of the backend specified in the option
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
specify the ``plotting.backend`` for the whole session, set
``pd.options.plotting.backend``.
.. versionadded:: 1.0.0
legend : bool, default False
Whether to show the legend.
.. versionadded:: 1.1.0
**kwargs
All other plotting keyword arguments to be passed to
:meth:`matplotlib.pyplot.hist`.
Returns
-------
matplotlib.AxesSubplot or numpy.ndarray of them
See Also
--------
matplotlib.pyplot.hist : Plot a histogram using matplotlib.
Examples
--------
This example draws a histogram based on the length and width of
some animals, displayed in three bins
.. plot::
:context: close-figs
>>> df = pd.DataFrame({
... 'length': [1.5, 0.5, 1.2, 0.9, 3],
... 'width': [0.7, 0.2, 0.15, 0.2, 1.1]
... }, index=['pig', 'rabbit', 'duck', 'chicken', 'horse'])
>>> hist = df.hist(bins=3)
Access a single value for a row/column pair by integer position.
Similar to ``iloc``, in that both provide integer-based lookups. Use
``iat`` if you only need to get or set a single value in a DataFrame
or Series.
Raises
------
IndexError
When integer position is out of bounds.
See Also
--------
DataFrame.at : Access a single value for a row/column label pair.
DataFrame.loc : Access a group of rows and columns by label(s).
DataFrame.iloc : Access a group of rows and columns by integer position(s).
Examples
--------
>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
... columns=['A', 'B', 'C'])
>>> df
A B C
0 0 2 3
1 0 4 1
2 10 20 30
Get value at specified row/column pair
>>> df.iat[1, 2]
1
Set value at specified row/column pair
>>> df.iat[1, 2] = 10
>>> df.iat[1, 2]
10
Get value within a series
>>> df.loc[0].iat[1]
2
Return index of first occurrence of maximum over requested axis.
NA/null values are excluded.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
.. versionadded:: 1.5.0
Returns
-------
Series
Indexes of maxima along the specified axis.
Raises
------
ValueError
* If the row/column is empty
See Also
--------
Series.idxmax : Return index of the maximum element.
Notes
-----
This method is the DataFrame version of ``ndarray.argmax``.
Examples
--------
Consider a dataset containing food consumption in Argentina.
>>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
... 'co2_emissions': [37.2, 19.66, 1712]},
... index=['Pork', 'Wheat Products', 'Beef'])
>>> df
consumption co2_emissions
Pork 10.51 37.20
Wheat Products 103.11 19.66
Beef 55.48 1712.00
By default, it returns the index for the maximum value in each column.
>>> df.idxmax()
consumption Wheat Products
co2_emissions Beef
dtype: object
To return the index for the maximum value in each row, use ``axis="columns"``.
>>> df.idxmax(axis="columns")
Pork co2_emissions
Wheat Products consumption
Beef co2_emissions
dtype: object
Return index of first occurrence of minimum over requested axis.
NA/null values are excluded.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
numeric_only : bool, default False
Include only `float`, `int` or `boolean` data.
.. versionadded:: 1.5.0
Returns
-------
Series
Indexes of minima along the specified axis.
Raises
------
ValueError
* If the row/column is empty
See Also
--------
Series.idxmin : Return index of the minimum element.
Notes
-----
This method is the DataFrame version of ``ndarray.argmin``.
Examples
--------
Consider a dataset containing food consumption in Argentina.
>>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
... 'co2_emissions': [37.2, 19.66, 1712]},
... index=['Pork', 'Wheat Products', 'Beef'])
>>> df
consumption co2_emissions
Pork 10.51 37.20
Wheat Products 103.11 19.66
Beef 55.48 1712.00
By default, it returns the index for the minimum value in each column.
>>> df.idxmin()
consumption Pork
co2_emissions Wheat Products
dtype: object
To return the index for the minimum value in each row, use ``axis="columns"``.
>>> df.idxmin(axis="columns")
Pork consumption
Wheat Products co2_emissions
Beef consumption
dtype: object
Purely integer-location based indexing for selection by position.
``.iloc[]`` is primarily integer position based (from ``0`` to
``length-1`` of the axis), but may also be used with a boolean
array.
Allowed inputs are:
- An integer, e.g. ``5``.
- A list or array of integers, e.g. ``[4, 3, 0]``.
- A slice object with ints, e.g. ``1:7``.
- A boolean array.
- A ``callable`` function with one argument (the calling Series or
DataFrame) and that returns valid output for indexing (one of the above).
This is useful in method chains, when you don't have a reference to the
calling object, but would like to base your selection on some value.
- A tuple of row and column indexes. The tuple elements consist of one of the
above inputs, e.g. ``(0, 1)``.
``.iloc`` will raise ``IndexError`` if a requested indexer is
out-of-bounds, except *slice* indexers which allow out-of-bounds
indexing (this conforms with python/numpy *slice* semantics).
See more at :ref:`Selection by Position <indexing.integer>`.
See Also
--------
DataFrame.iat : Fast integer location scalar accessor.
DataFrame.loc : Purely label-location based indexer for selection by label.
Series.iloc : Purely integer-location based indexing for
selection by position.
Examples
--------
>>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4},
... {'a': 100, 'b': 200, 'c': 300, 'd': 400},
... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }]
>>> df = pd.DataFrame(mydict)
>>> df
a b c d
0 1 2 3 4
1 100 200 300 400
2 1000 2000 3000 4000
**Indexing just the rows**
With a scalar integer.
>>> type(df.iloc[0])
<class 'pandas.core.series.Series'>
>>> df.iloc[0]
a 1
b 2
c 3
d 4
Name: 0, dtype: int64
With a list of integers.
>>> df.iloc[[0]]
a b c d
0 1 2 3 4
>>> type(df.iloc[[0]])
<class 'pandas.core.frame.DataFrame'>
>>> df.iloc[[0, 1]]
a b c d
0 1 2 3 4
1 100 200 300 400
With a `slice` object.
>>> df.iloc[:3]
a b c d
0 1 2 3 4
1 100 200 300 400
2 1000 2000 3000 4000
With a boolean mask the same length as the index.
>>> df.iloc[[True, False, True]]
a b c d
0 1 2 3 4
2 1000 2000 3000 4000
With a callable, useful in method chains. The `x` passed
to the ``lambda`` is the DataFrame being sliced. This selects
the rows whose index label even.
>>> df.iloc[lambda x: x.index % 2 == 0]
a b c d
0 1 2 3 4
2 1000 2000 3000 4000
**Indexing both axes**
You can mix the indexer types for the index and columns. Use ``:`` to
select the entire axis.
With scalar integers.
>>> df.iloc[0, 1]
2
With lists of integers.
>>> df.iloc[[0, 2], [1, 3]]
b d
0 2 4
2 2000 4000
With `slice` objects.
>>> df.iloc[1:3, 0:3]
a b c
1 100 200 300
2 1000 2000 3000
With a boolean array whose length matches the columns.
>>> df.iloc[:, [True, False, True, False]]
a c
0 1 3
1 100 300
2 1000 3000
With a callable function that expects the Series or DataFrame.
>>> df.iloc[:, lambda df: [0, 2]]
a c
0 1 3
1 100 300
2 1000 3000
Immutable sequence used for indexing and alignment.
The basic object storing axis labels for all pandas objects.
Parameters
----------
data : array-like (1-dimensional)
dtype : NumPy dtype (default: object)
If dtype is None, we find the dtype that best fits the data.
If an actual dtype is provided, we coerce to that dtype if it's safe.
Otherwise, an error will be raised.
copy : bool
Make a copy of input ndarray.
name : object
Name to be stored in the index.
tupleize_cols : bool (default: True)
When True, attempt to create a MultiIndex if possible.
See Also
--------
RangeIndex : Index implementing a monotonic integer range.
CategoricalIndex : Index of :class:`Categorical` s.
MultiIndex : A multi-level, or hierarchical Index.
IntervalIndex : An Index of :class:`Interval` s.
DatetimeIndex : Index of datetime64 data.
TimedeltaIndex : Index of timedelta64 data.
PeriodIndex : Index of Period data.
NumericIndex : Index of numpy int/uint/float data.
Int64Index : Index of purely int64 labels (deprecated).
UInt64Index : Index of purely uint64 labels (deprecated).
Float64Index : Index of purely float64 labels (deprecated).
Notes
-----
An Index instance can **only** contain hashable objects
Examples
--------
>>> pd.Index([1, 2, 3])
Int64Index([1, 2, 3], dtype='int64')
>>> pd.Index(list('abc'))
Index(['a', 'b', 'c'], dtype='object')
Attempt to infer better dtypes for object columns.
Attempts soft conversion of object-dtyped
columns, leaving non-object and unconvertible
columns unchanged. The inference rules are the
same as during normal Series/DataFrame construction.
Returns
-------
converted : same type as input object
See Also
--------
to_datetime : Convert argument to datetime.
to_timedelta : Convert argument to timedelta.
to_numeric : Convert argument to numeric type.
convert_dtypes : Convert argument to best possible dtype.
Examples
--------
>>> df = pd.DataFrame({"A": ["a", 1, 2, 3]})
>>> df = df.iloc[1:]
>>> df
A
1 1
2 2
3 3
>>> df.dtypes
A object
dtype: object
>>> df.infer_objects().dtypes
A int64
dtype: object
Print a concise summary of a DataFrame.
This method prints information about a DataFrame including
the index dtype and columns, non-null values and memory usage.
Parameters
----------
verbose : bool, optional
Whether to print the full summary. By default, the setting in
``pandas.options.display.max_info_columns`` is followed.
buf : writable buffer, defaults to sys.stdout
Where to send the output. By default, the output is printed to
sys.stdout. Pass a writable buffer if you need to further process
the output. max_cols : int, optional
When to switch from the verbose to the truncated output. If the
DataFrame has more than `max_cols` columns, the truncated output
is used. By default, the setting in
``pandas.options.display.max_info_columns`` is used.
memory_usage : bool, str, optional
Specifies whether total memory usage of the DataFrame
elements (including the index) should be displayed. By default,
this follows the ``pandas.options.display.memory_usage`` setting.
True always show memory usage. False never shows memory usage.
A value of 'deep' is equivalent to "True with deep introspection".
Memory usage is shown in human-readable units (base-2
representation). Without deep introspection a memory estimation is
made based in column dtype and number of rows assuming values
consume the same memory amount for corresponding dtypes. With deep
memory introspection, a real memory usage calculation is performed
at the cost of computational resources. See the
:ref:`Frequently Asked Questions <df-memory-usage>` for more
details.
show_counts : bool, optional
Whether to show the non-null counts. By default, this is shown
only if the DataFrame is smaller than
``pandas.options.display.max_info_rows`` and
``pandas.options.display.max_info_columns``. A value of True always
shows the counts, and False never shows the counts.
null_counts : bool, optional
.. deprecated:: 1.2.0
Use show_counts instead.
Returns
-------
None
This method prints a summary of a DataFrame and returns None.
See Also
--------
DataFrame.describe: Generate descriptive statistics of DataFrame
columns.
DataFrame.memory_usage: Memory usage of DataFrame columns.
Examples
--------
>>> int_values = [1, 2, 3, 4, 5]
>>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
>>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
>>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
... "float_col": float_values})
>>> df
int_col text_col float_col
0 1 alpha 0.00
1 2 beta 0.25
2 3 gamma 0.50
3 4 delta 0.75
4 5 epsilon 1.00
Prints information of all columns:
>>> df.info(verbose=True)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 int_col 5 non-null int64
1 text_col 5 non-null object
2 float_col 5 non-null float64
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes
Prints a summary of columns count and its dtypes but not per column
information:
>>> df.info(verbose=False)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Columns: 3 entries, int_col to float_col
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes
Pipe output of DataFrame.info to buffer instead of sys.stdout, get
buffer content and writes to a text file:
>>> import io
>>> buffer = io.StringIO()
>>> df.info(buf=buffer)
>>> s = buffer.getvalue()
>>> with open("df_info.txt", "w",
... encoding="utf-8") as f: # doctest: +SKIP
... f.write(s)
260
The `memory_usage` parameter allows deep introspection mode, specially
useful for big DataFrames and fine-tune memory optimization:
>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
>>> df = pd.DataFrame({
... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
... })
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 column_1 1000000 non-null object
1 column_2 1000000 non-null object
2 column_3 1000000 non-null object
dtypes: object(3)
memory usage: 22.9+ MB
>>> df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 column_1 1000000 non-null object
1 column_2 1000000 non-null object
2 column_3 1000000 non-null object
dtypes: object(3)
memory usage: 165.9 MB
Insert column into DataFrame at specified location.
Raises a ValueError if `column` is already contained in the DataFrame,
unless `allow_duplicates` is set to True.
Parameters
----------
loc : int
Insertion index. Must verify 0 <= loc <= len(columns).
column : str, number, or hashable object
Label of the inserted column.
value : Scalar, Series, or array-like
allow_duplicates : bool, optional, default lib.no_default
See Also
--------
Index.insert : Insert new item by index.
Examples
--------
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df
col1 col2
0 1 3
1 2 4
>>> df.insert(1, "newcol", [99, 99])
>>> df
col1 newcol col2
0 1 99 3
1 2 99 4
>>> df.insert(0, "col1", [100, 100], allow_duplicates=True)
>>> df
col1 col1 newcol col2
0 100 1 99 3
1 100 2 99 4
Notice that pandas uses index alignment in case of `value` from type `Series`:
>>> df.insert(0, "col0", pd.Series([5, 6], index=[1, 2]))
>>> df
col0 col1 col1 newcol col2
0 NaN 100 1 99 3
1 5.0 100 2 99 4
None
Set the given value in the column with position 'loc'.
This is a positional analogue to __setitem__.
Parameters
----------
loc : int or sequence of ints
value : scalar or arraylike
Notes
-----
Unlike `frame.iloc[:, i] = value`, `frame.isetitem(loc, value)` will
_never_ try to set the values in place, but will always insert a new
array.
In cases where `frame.columns` is unique, this is equivalent to
`frame[frame.columns[i]] = value`.
Whether each element in the DataFrame is contained in values.
Parameters
----------
values : iterable, Series, DataFrame or dict
The result will only be true at a location if all the
labels match. If `values` is a Series, that's the index. If
`values` is a dict, the keys must be the column names,
which must match. If `values` is a DataFrame,
then both the index and column labels must match.
Returns
-------
DataFrame
DataFrame of booleans showing whether each element in the DataFrame
is contained in values.
See Also
--------
DataFrame.eq: Equality test for DataFrame.
Series.isin: Equivalent method on Series.
Series.str.contains: Test if pattern or regex is contained within a
string of a Series or Index.
Examples
--------
>>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]},
... index=['falcon', 'dog'])
>>> df
num_legs num_wings
falcon 2 2
dog 4 0
When ``values`` is a list check whether every value in the DataFrame
is present in the list (which animals have 0 or 2 legs or wings)
>>> df.isin([0, 2])
num_legs num_wings
falcon True True
dog False True
To check if ``values`` is *not* in the DataFrame, use the ``~`` operator:
>>> ~df.isin([0, 2])
num_legs num_wings
falcon False False
dog True False
When ``values`` is a dict, we can pass values to check for each
column separately:
>>> df.isin({'num_wings': [0, 3]})
num_legs num_wings
falcon False False
dog False True
When ``values`` is a Series or DataFrame the index and column must
match. Note that 'falcon' does not match based on the number of legs
in other.
>>> other = pd.DataFrame({'num_legs': [8, 3], 'num_wings': [0, 2]},
... index=['spider', 'falcon'])
>>> df.isin(other)
num_legs num_wings
falcon False True
dog False False
Detect missing values.
Return a boolean same-sized object indicating if the values are NA.
NA values, such as None or :attr:`numpy.NaN`, gets mapped to True
values.
Everything else gets mapped to False values. Characters such as empty
strings ``''`` or :attr:`numpy.inf` are not considered NA values
(unless you set ``pandas.options.mode.use_inf_as_na = True``).
Returns
-------
DataFrame
Mask of bool values for each element in DataFrame that
indicates whether an element is an NA value.
See Also
--------
DataFrame.isnull : Alias of isna.
DataFrame.notna : Boolean inverse of isna.
DataFrame.dropna : Omit axes labels with missing values.
isna : Top-level isna.
Examples
--------
Show which entries in a DataFrame are NA.
>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
... born=[pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... name=['Alfred', 'Batman', ''],
... toy=[None, 'Batmobile', 'Joker']))
>>> df
age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker
>>> df.isna()
age born name toy
0 False True False True
1 False False False False
2 True False False False
Show which entries in a Series are NA.
>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64
>>> ser.isna()
0 False
1 False
2 True
dtype: bool
DataFrame.isnull is an alias for DataFrame.isna.
Detect missing values.
Return a boolean same-sized object indicating if the values are NA.
NA values, such as None or :attr:`numpy.NaN`, gets mapped to True
values.
Everything else gets mapped to False values. Characters such as empty
strings ``''`` or :attr:`numpy.inf` are not considered NA values
(unless you set ``pandas.options.mode.use_inf_as_na = True``).
Returns
-------
DataFrame
Mask of bool values for each element in DataFrame that
indicates whether an element is an NA value.
See Also
--------
DataFrame.isnull : Alias of isna.
DataFrame.notna : Boolean inverse of isna.
DataFrame.dropna : Omit axes labels with missing values.
isna : Top-level isna.
Examples
--------
Show which entries in a DataFrame are NA.
>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
... born=[pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... name=['Alfred', 'Batman', ''],
... toy=[None, 'Batmobile', 'Joker']))
>>> df
age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker
>>> df.isna()
age born name toy
0 False True False True
1 False False False False
2 True False False False
Show which entries in a Series are NA.
>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64
>>> ser.isna()
0 False
1 False
2 True
dtype: bool
Iterate over (column name, Series) pairs.
Iterates over the DataFrame columns, returning a tuple with
the column name and the content as a Series.
Yields
------
label : object
The column names for the DataFrame being iterated over.
content : Series
The column entries belonging to each label, as a Series.
See Also
--------
DataFrame.iterrows : Iterate over DataFrame rows as
(index, Series) pairs.
DataFrame.itertuples : Iterate over DataFrame rows as namedtuples
of the values.
Examples
--------
>>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'],
... 'population': [1864, 22000, 80000]},
... index=['panda', 'polar', 'koala'])
>>> df
species population
panda bear 1864
polar bear 22000
koala marsupial 80000
>>> for label, content in df.items():
... print(f'label: {label}')
... print(f'content: {content}', sep='\n')
...
label: species
content:
panda bear
polar bear
koala marsupial
Name: species, dtype: object
label: population
content:
panda 1864
polar 22000
koala 80000
Name: population, dtype: int64
Iterate over (column name, Series) pairs.
.. deprecated:: 1.5.0
iteritems is deprecated and will be removed in a future version.
Use .items instead.
Iterates over the DataFrame columns, returning a tuple with
the column name and the content as a Series.
Yields
------
label : object
The column names for the DataFrame being iterated over.
content : Series
The column entries belonging to each label, as a Series.
See Also
--------
DataFrame.iter : Recommended alternative.
DataFrame.iterrows : Iterate over DataFrame rows as
(index, Series) pairs.
DataFrame.itertuples : Iterate over DataFrame rows as namedtuples
of the values.
Iterate over DataFrame rows as (index, Series) pairs.
Yields
------
index : label or tuple of label
The index of the row. A tuple for a `MultiIndex`.
data : Series
The data of the row as a Series.
See Also
--------
DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values.
DataFrame.items : Iterate over (column name, Series) pairs.
Notes
-----
1. Because ``iterrows`` returns a Series for each row,
it does **not** preserve dtypes across the rows (dtypes are
preserved across columns for DataFrames). For example,
>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
>>> row = next(df.iterrows())[1]
>>> row
int 1.0
float 1.5
Name: 0, dtype: float64
>>> print(row['int'].dtype)
float64
>>> print(df['int'].dtype)
int64
To preserve dtypes while iterating over the rows, it is better
to use :meth:`itertuples` which returns namedtuples of the values
and which is generally faster than ``iterrows``.
2. You should **never modify** something you are iterating over.
This is not guaranteed to work in all cases. Depending on the
data types, the iterator returns a copy and not a view, and writing
to it will have no effect.
Iterate over DataFrame rows as namedtuples.
Parameters
----------
index : bool, default True
If True, return the index as the first element of the tuple.
name : str or None, default "Pandas"
The name of the returned namedtuples or None to return regular
tuples.
Returns
-------
iterator
An object to iterate over namedtuples for each row in the
DataFrame with the first field possibly being the index and
following fields being the column values.
See Also
--------
DataFrame.iterrows : Iterate over DataFrame rows as (index, Series)
pairs.
DataFrame.items : Iterate over (column name, Series) pairs.
Notes
-----
The column names will be renamed to positional names if they are
invalid Python identifiers, repeated, or start with an underscore.
Examples
--------
>>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]},
... index=['dog', 'hawk'])
>>> df
num_legs num_wings
dog 4 0
hawk 2 2
>>> for row in df.itertuples():
... print(row)
...
Pandas(Index='dog', num_legs=4, num_wings=0)
Pandas(Index='hawk', num_legs=2, num_wings=2)
By setting the `index` parameter to False we can remove the index
as the first element of the tuple:
>>> for row in df.itertuples(index=False):
... print(row)
...
Pandas(num_legs=4, num_wings=0)
Pandas(num_legs=2, num_wings=2)
With the `name` parameter set we set a custom name for the yielded
namedtuples:
>>> for row in df.itertuples(name='Animal'):
... print(row)
...
Animal(Index='dog', num_legs=4, num_wings=0)
Animal(Index='hawk', num_legs=2, num_wings=2)
Join columns of another DataFrame.
Join columns with `other` DataFrame either on index or on a key
column. Efficiently join multiple DataFrame objects by index at once by
passing a list.
Parameters
----------
other : DataFrame, Series, or a list containing any combination of them
Index should be similar to one of the columns in this one. If a
Series is passed, its name attribute must be set, and that will be
used as the column name in the resulting joined DataFrame.
on : str, list of str, or array-like, optional
Column or index level name(s) in the caller to join on the index
in `other`, otherwise joins index-on-index. If multiple
values given, the `other` DataFrame must have a MultiIndex. Can
pass an array as the join key if it is not already contained in
the calling DataFrame. Like an Excel VLOOKUP operation.
how : {'left', 'right', 'outer', 'inner'}, default 'left'
How to handle the operation of the two objects.
* left: use calling frame's index (or column if on is specified)
* right: use `other`'s index.
* outer: form union of calling frame's index (or column if on is
specified) with `other`'s index, and sort it.
lexicographically.
* inner: form intersection of calling frame's index (or column if
on is specified) with `other`'s index, preserving the order
of the calling's one.
* cross: creates the cartesian product from both frames, preserves the order
of the left keys.
.. versionadded:: 1.2.0
lsuffix : str, default ''
Suffix to use from left frame's overlapping columns.
rsuffix : str, default ''
Suffix to use from right frame's overlapping columns.
sort : bool, default False
Order result DataFrame lexicographically by the join key. If False,
the order of the join key depends on the join type (how keyword).
validate : str, optional
If specified, checks if join is of specified type.
* "one_to_one" or "1:1": check if join keys are unique in both left
and right datasets.
* "one_to_many" or "1:m": check if join keys are unique in left dataset.
* "many_to_one" or "m:1": check if join keys are unique in right dataset.
* "many_to_many" or "m:m": allowed, but does not result in checks.
.. versionadded:: 1.5.0
Returns
-------
DataFrame
A dataframe containing columns from both the caller and `other`.
See Also
--------
DataFrame.merge : For column(s)-on-column(s) operations.
Notes
-----
Parameters `on`, `lsuffix`, and `rsuffix` are not supported when
passing a list of `DataFrame` objects.
Support for specifying index levels as the `on` parameter was added
in version 0.23.0.
Examples
--------
>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> df
key A
0 K0 A0
1 K1 A1
2 K2 A2
3 K3 A3
4 K4 A4
5 K5 A5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})
>>> other
key B
0 K0 B0
1 K1 B1
2 K2 B2
Join DataFrames using their indexes.
>>> df.join(other, lsuffix='_caller', rsuffix='_other')
key_caller A key_other B
0 K0 A0 K0 B0
1 K1 A1 K1 B1
2 K2 A2 K2 B2
3 K3 A3 NaN NaN
4 K4 A4 NaN NaN
5 K5 A5 NaN NaN
If we want to join using the key columns, we need to set key to be
the index in both `df` and `other`. The joined DataFrame will have
key as its index.
>>> df.set_index('key').join(other.set_index('key'))
A B
key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN
Another option to join using the key columns is to use the `on`
parameter. DataFrame.join always uses `other`'s index but we can use
any column in `df`. This method preserves the original DataFrame's
index in the result.
>>> df.join(other.set_index('key'), on='key')
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 NaN
4 K4 A4 NaN
5 K5 A5 NaN
Using non-unique key values shows how they are matched.
>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K1', 'K3', 'K0', 'K1'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> df
key A
0 K0 A0
1 K1 A1
2 K1 A2
3 K3 A3
4 K0 A4
5 K1 A5
>>> df.join(other.set_index('key'), on='key', validate='m:1')
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K1 A2 B1
3 K3 A3 NaN
4 K0 A4 B0
5 K1 A5 B1
Get the 'info axis' (see Indexing for more).
This is index for Series, columns for DataFrame.
Returns
-------
Index
Info axis.
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher's definition of
kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher's definition of
kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
Select final periods of time series data based on a date offset.
For a DataFrame with a sorted DatetimeIndex, this function
selects the last few rows based on a date offset.
Parameters
----------
offset : str, DateOffset, dateutil.relativedelta
The offset length of the data that will be selected. For instance,
'3D' will display all the rows having their index within the last 3 days.
Returns
-------
Series or DataFrame
A subset of the caller.
Raises
------
TypeError
If the index is not a :class:`DatetimeIndex`
See Also
--------
first : Select initial periods of time series based on a date offset.
at_time : Select values at a particular time of the day.
between_time : Select values between particular times of the day.
Examples
--------
>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
>>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
>>> ts
A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4
Get the rows for the last 3 days:
>>> ts.last('3D')
A
2018-04-13 3
2018-04-15 4
Notice the data for 3 last calendar days were returned, not the last
3 observed days in the dataset, and therefore data for 2018-04-11 was
not returned.
Return index for last non-NA value or None, if no non-NA value is found. Returns ------- scalar : type of index Notes ----- If all elements are non-NA/null, returns None. Also returns None for empty Series/DataFrame.
Get Less than or equal to of dataframe and other, element-wise (binary operator `le`).
Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.
Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.
Parameters
----------
other : scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns
(1 or 'columns').
level : int or label
Broadcast across a level, matching Index values on the passed
MultiIndex level.
Returns
-------
DataFrame of bool
Result of the comparison.
See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
inequality elementwise.
Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).
Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df
cost revenue
A 250 100
B 150 250
C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100
cost revenue
A False True
B False False
C True False
>>> df.eq(100)
cost revenue
A False True
B False False
C True False
When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:
>>> df != pd.Series([100, 250], index=["cost", "revenue"])
cost revenue
A True True
B True False
C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
cost revenue
A True False
B True True
C True True
D True True
When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:
>>> df == [250, 100]
cost revenue
A True True
B False False
C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index')
cost revenue
A True False
B False True
C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
... index=['A', 'B', 'C', 'D'])
>>> other
revenue
A 300
B 250
C 100
D 150
>>> df.gt(other)
cost revenue
A False False
B False False
C False True
D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
cost revenue
Q1 A 250 100
B 150 250
C 100 300
Q2 A 150 200
B 300 175
C 220 225
>>> df.le(df_multindex, level=1)
cost revenue
Q1 A True True
B True True
C True True
Q2 A False True
B True False
C True False
Access a group of rows and columns by label(s) or a boolean array.
``.loc[]`` is primarily label based, but may also be used with a
boolean array.
Allowed inputs are:
- A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is
interpreted as a *label* of the index, and **never** as an
integer position along the index).
- A list or array of labels, e.g. ``['a', 'b', 'c']``.
- A slice object with labels, e.g. ``'a':'f'``.
.. warning:: Note that contrary to usual python slices, **both** the
start and the stop are included
- A boolean array of the same length as the axis being sliced,
e.g. ``[True, False, True]``.
- An alignable boolean Series. The index of the key will be aligned before
masking.
- An alignable Index. The Index of the returned selection will be the input.
- A ``callable`` function with one argument (the calling Series or
DataFrame) and that returns valid output for indexing (one of the above)
See more at :ref:`Selection by Label <indexing.label>`.
Raises
------
KeyError
If any items are not found.
IndexingError
If an indexed key is passed and its index is unalignable to the frame index.
See Also
--------
DataFrame.at : Access a single value for a row/column label pair.
DataFrame.iloc : Access group of rows and columns by integer position(s).
DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the
Series/DataFrame.
Series.loc : Access group of values using labels.
Examples
--------
**Getting values**
>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=['cobra', 'viper', 'sidewinder'],
... columns=['max_speed', 'shield'])
>>> df
max_speed shield
cobra 1 2
viper 4 5
sidewinder 7 8
Single label. Note this returns the row as a Series.
>>> df.loc['viper']
max_speed 4
shield 5
Name: viper, dtype: int64
List of labels. Note using ``[[]]`` returns a DataFrame.
>>> df.loc[['viper', 'sidewinder']]
max_speed shield
viper 4 5
sidewinder 7 8
Single label for row and column
>>> df.loc['cobra', 'shield']
2
Slice with labels for row and single label for column. As mentioned
above, note that both the start and stop of the slice are included.
>>> df.loc['cobra':'viper', 'max_speed']
cobra 1
viper 4
Name: max_speed, dtype: int64
Boolean list with the same length as the row axis
>>> df.loc[[False, False, True]]
max_speed shield
sidewinder 7 8
Alignable boolean Series:
>>> df.loc[pd.Series([False, True, False],
... index=['viper', 'sidewinder', 'cobra'])]
max_speed shield
sidewinder 7 8
Index (same behavior as ``df.reindex``)
>>> df.loc[pd.Index(["cobra", "viper"], name="foo")]
max_speed shield
foo
cobra 1 2
viper 4 5
Conditional that returns a boolean Series
>>> df.loc[df['shield'] > 6]
max_speed shield
sidewinder 7 8
Conditional that returns a boolean Series with column labels specified
>>> df.loc[df['shield'] > 6, ['max_speed']]
max_speed
sidewinder 7
Callable that returns a boolean Series
>>> df.loc[lambda df: df['shield'] == 8]
max_speed shield
sidewinder 7 8
**Setting values**
Set value for all items matching the list of labels
>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50
>>> df
max_speed shield
cobra 1 2
viper 4 50
sidewinder 7 50
Set value for an entire row
>>> df.loc['cobra'] = 10
>>> df
max_speed shield
cobra 10 10
viper 4 50
sidewinder 7 50
Set value for an entire column
>>> df.loc[:, 'max_speed'] = 30
>>> df
max_speed shield
cobra 30 10
viper 30 50
sidewinder 30 50
Set value for rows matching callable condition
>>> df.loc[df['shield'] > 35] = 0
>>> df
max_speed shield
cobra 30 10
viper 0 0
sidewinder 0 0
**Getting values on a DataFrame with an index that has integer labels**
Another example using integers for the index
>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
... index=[7, 8, 9], columns=['max_speed', 'shield'])
>>> df
max_speed shield
7 1 2
8 4 5
9 7 8
Slice with integer labels for rows. As mentioned above, note that both
the start and stop of the slice are included.
>>> df.loc[7:9]
max_speed shield
7 1 2
8 4 5
9 7 8
**Getting values with a MultiIndex**
A number of examples using a DataFrame with a MultiIndex
>>> tuples = [
... ('cobra', 'mark i'), ('cobra', 'mark ii'),
... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
... ('viper', 'mark ii'), ('viper', 'mark iii')
... ]
>>> index = pd.MultiIndex.from_tuples(tuples)
>>> values = [[12, 2], [0, 4], [10, 20],
... [1, 4], [7, 1], [16, 36]]
>>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
>>> df
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
mark ii 1 4
viper mark ii 7 1
mark iii 16 36
Single label. Note this returns a DataFrame with a single index.
>>> df.loc['cobra']
max_speed shield
mark i 12 2
mark ii 0 4
Single index tuple. Note this returns a Series.
>>> df.loc[('cobra', 'mark ii')]
max_speed 0
shield 4
Name: (cobra, mark ii), dtype: int64
Single label for row and column. Similar to passing in a tuple, this
returns a Series.
>>> df.loc['cobra', 'mark i']
max_speed 12
shield 2
Name: (cobra, mark i), dtype: int64
Single tuple. Note using ``[[]]`` returns a DataFrame.
>>> df.loc[[('cobra', 'mark ii')]]
max_speed shield
cobra mark ii 0 4
Single tuple for the index with a single label for the column
>>> df.loc[('cobra', 'mark i'), 'shield']
2
Slice from index tuple to single label
>>> df.loc[('cobra', 'mark i'):'viper']
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
mark ii 1 4
viper mark ii 7 1
mark iii 16 36
Slice from index tuple to index tuple
>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')]
max_speed shield
cobra mark i 12 2
mark ii 0 4
sidewinder mark i 10 20
mark ii 1 4
viper mark ii 7 1
Please see the :ref:`user guide<advanced.advanced_hierarchical>`
for more details and explanations of advanced indexing.
Label-based "fancy indexing" function for DataFrame.
.. deprecated:: 1.2.0
DataFrame.lookup is deprecated,
use pandas.factorize and NumPy indexing instead.
For further details see
:ref:`Looking up values by index/column labels <indexing.lookup>`.
Given equal-length arrays of row and column labels, return an
array of the values corresponding to each (row, col) pair.
Parameters
----------
row_labels : sequence
The row labels to use for lookup.
col_labels : sequence
The column labels to use for lookup.
Returns
-------
numpy.ndarray
The found values.
Get Less than of dataframe and other, element-wise (binary operator `lt`).
Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.
Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.
Parameters
----------
other : scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns
(1 or 'columns').
level : int or label
Broadcast across a level, matching Index values on the passed
MultiIndex level.
Returns
-------
DataFrame of bool
Result of the comparison.
See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
inequality elementwise.
Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).
Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df
cost revenue
A 250 100
B 150 250
C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100
cost revenue
A False True
B False False
C True False
>>> df.eq(100)
cost revenue
A False True
B False False
C True False
When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:
>>> df != pd.Series([100, 250], index=["cost", "revenue"])
cost revenue
A True True
B True False
C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
cost revenue
A True False
B True True
C True True
D True True
When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:
>>> df == [250, 100]
cost revenue
A True True
B False False
C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index')
cost revenue
A True False
B False True
C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
... index=['A', 'B', 'C', 'D'])
>>> other
revenue
A 300
B 250
C 100
D 150
>>> df.gt(other)
cost revenue
A False False
B False False
C False True
D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
cost revenue
Q1 A 250 100
B 150 250
C 100 300
Q2 A 150 200
B 300 175
C 220 225
>>> df.le(df_multindex, level=1)
cost revenue
Q1 A True True
B True True
C True True
Q2 A False True
B True False
C True False
Return the mean absolute deviation of the values over the requested axis.
.. deprecated:: 1.5.0
mad is deprecated.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
Returns
-------
Series or DataFrame (if level specified)
None
Return the maximum of the values over the requested axis.
If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.
Examples
--------
>>> idx = pd.MultiIndex.from_arrays([
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded animal
warm dog 4
falcon 2
cold fish 0
spider 8
Name: legs, dtype: int64
>>> s.max()
8
Return the mean of the values over the requested axis.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
Return the median of the values over the requested axis.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
This function is useful to massage a DataFrame into a format where one
or more columns are identifier variables (`id_vars`), while all other
columns, considered measured variables (`value_vars`), are "unpivoted" to
the row axis, leaving just two non-identifier columns, 'variable' and
'value'.
Parameters
----------
id_vars : tuple, list, or ndarray, optional
Column(s) to use as identifier variables.
value_vars : tuple, list, or ndarray, optional
Column(s) to unpivot. If not specified, uses all columns that
are not set as `id_vars`.
var_name : scalar
Name to use for the 'variable' column. If None it uses
``frame.columns.name`` or 'variable'.
value_name : scalar, default 'value'
Name to use for the 'value' column.
col_level : int or str, optional
If columns are a MultiIndex then use this level to melt.
ignore_index : bool, default True
If True, original index is ignored. If False, the original index is retained.
Index labels will be repeated as necessary.
.. versionadded:: 1.1.0
Returns
-------
DataFrame
Unpivoted DataFrame.
See Also
--------
melt : Identical method.
pivot_table : Create a spreadsheet-style pivot table as a DataFrame.
DataFrame.pivot : Return reshaped DataFrame organized
by given index / column values.
DataFrame.explode : Explode a DataFrame from list-like
columns to long format.
Notes
-----
Reference :ref:`the user guide <reshaping.melt>` for more examples.
Examples
--------
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
... 'B': {0: 1, 1: 3, 2: 5},
... 'C': {0: 2, 1: 4, 2: 6}})
>>> df
A B C
0 a 1 2
1 b 3 4
2 c 5 6
>>> df.melt(id_vars=['A'], value_vars=['B'])
A variable value
0 a B 1
1 b B 3
2 c B 5
>>> df.melt(id_vars=['A'], value_vars=['B', 'C'])
A variable value
0 a B 1
1 b B 3
2 c B 5
3 a C 2
4 b C 4
5 c C 6
The names of 'variable' and 'value' columns can be customized:
>>> df.melt(id_vars=['A'], value_vars=['B'],
... var_name='myVarname', value_name='myValname')
A myVarname myValname
0 a B 1
1 b B 3
2 c B 5
Original index values can be kept around:
>>> df.melt(id_vars=['A'], value_vars=['B', 'C'], ignore_index=False)
A variable value
0 a B 1
1 b B 3
2 c B 5
0 a C 2
1 b C 4
2 c C 6
If you have multi-index columns:
>>> df.columns = [list('ABC'), list('DEF')]
>>> df
A B C
D E F
0 a 1 2
1 b 3 4
2 c 5 6
>>> df.melt(col_level=0, id_vars=['A'], value_vars=['B'])
A variable value
0 a B 1
1 b B 3
2 c B 5
>>> df.melt(id_vars=[('A', 'D')], value_vars=[('B', 'E')])
(A, D) variable_0 variable_1 value
0 a B E 1
1 b B E 3
2 c B E 5
Return the memory usage of each column in bytes.
The memory usage can optionally include the contribution of
the index and elements of `object` dtype.
This value is displayed in `DataFrame.info` by default. This can be
suppressed by setting ``pandas.options.display.memory_usage`` to False.
Parameters
----------
index : bool, default True
Specifies whether to include the memory usage of the DataFrame's
index in returned Series. If ``index=True``, the memory usage of
the index is the first item in the output.
deep : bool, default False
If True, introspect the data deeply by interrogating
`object` dtypes for system-level memory consumption, and include
it in the returned values.
Returns
-------
Series
A Series whose index is the original column names and whose values
is the memory usage of each column in bytes.
See Also
--------
numpy.ndarray.nbytes : Total bytes consumed by the elements of an
ndarray.
Series.memory_usage : Bytes consumed by a Series.
Categorical : Memory-efficient array for string values with
many repeated values.
DataFrame.info : Concise summary of a DataFrame.
Notes
-----
See the :ref:`Frequently Asked Questions <df-memory-usage>` for more
details.
Examples
--------
>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
>>> data = dict([(t, np.ones(shape=5000, dtype=int).astype(t))
... for t in dtypes])
>>> df = pd.DataFrame(data)
>>> df.head()
int64 float64 complex128 object bool
0 1 1.0 1.0+0.0j 1 True
1 1 1.0 1.0+0.0j 1 True
2 1 1.0 1.0+0.0j 1 True
3 1 1.0 1.0+0.0j 1 True
4 1 1.0 1.0+0.0j 1 True
>>> df.memory_usage()
Index 128
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64
>>> df.memory_usage(index=False)
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64
The memory footprint of `object` dtype columns is ignored by default:
>>> df.memory_usage(deep=True)
Index 128
int64 40000
float64 40000
complex128 80000
object 180000
bool 5000
dtype: int64
Use a Categorical for efficient storage of an object-dtype column with
many repeated values.
>>> df['object'].astype('category').memory_usage(deep=True)
5244
Merge DataFrame or named Series objects with a database-style join.
A named Series object is treated as a DataFrame with a single named column.
The join is done on columns or indexes. If joining columns on
columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes
on indexes or indexes on a column or columns, the index will be passed on.
When performing a cross merge, no column specifications to merge on are
allowed.
.. warning::
If both key columns contain rows where the key is a null value, those
rows will be matched against each other. This is different from usual SQL
join behaviour and can lead to unexpected results.
Parameters
----------
right : DataFrame or named Series
Object to merge with.
how : {'left', 'right', 'outer', 'inner', 'cross'}, default 'inner'
Type of merge to be performed.
* left: use only keys from left frame, similar to a SQL left outer join;
preserve key order.
* right: use only keys from right frame, similar to a SQL right outer join;
preserve key order.
* outer: use union of keys from both frames, similar to a SQL full outer
join; sort keys lexicographically.
* inner: use intersection of keys from both frames, similar to a SQL inner
join; preserve the order of the left keys.
* cross: creates the cartesian product from both frames, preserves the order
of the left keys.
.. versionadded:: 1.2.0
on : label or list
Column or index level names to join on. These must be found in both
DataFrames. If `on` is None and not merging on indexes then this defaults
to the intersection of the columns in both DataFrames.
left_on : label or list, or array-like
Column or index level names to join on in the left DataFrame. Can also
be an array or list of arrays of the length of the left DataFrame.
These arrays are treated as if they are columns.
right_on : label or list, or array-like
Column or index level names to join on in the right DataFrame. Can also
be an array or list of arrays of the length of the right DataFrame.
These arrays are treated as if they are columns.
left_index : bool, default False
Use the index from the left DataFrame as the join key(s). If it is a
MultiIndex, the number of keys in the other DataFrame (either the index
or a number of columns) must match the number of levels.
right_index : bool, default False
Use the index from the right DataFrame as the join key. Same caveats as
left_index.
sort : bool, default False
Sort the join keys lexicographically in the result DataFrame. If False,
the order of the join keys depends on the join type (how keyword).
suffixes : list-like, default is ("_x", "_y")
A length-2 sequence where each element is optionally a string
indicating the suffix to add to overlapping column names in
`left` and `right` respectively. Pass a value of `None` instead
of a string to indicate that the column name from `left` or
`right` should be left as-is, with no suffix. At least one of the
values must not be None.
copy : bool, default True
If False, avoid copy if possible.
indicator : bool or str, default False
If True, adds a column to the output DataFrame called "_merge" with
information on the source of each row. The column can be given a different
name by providing a string argument. The column will have a Categorical
type with the value of "left_only" for observations whose merge key only
appears in the left DataFrame, "right_only" for observations
whose merge key only appears in the right DataFrame, and "both"
if the observation's merge key is found in both DataFrames.
validate : str, optional
If specified, checks if merge is of specified type.
* "one_to_one" or "1:1": check if merge keys are unique in both
left and right datasets.
* "one_to_many" or "1:m": check if merge keys are unique in left
dataset.
* "many_to_one" or "m:1": check if merge keys are unique in right
dataset.
* "many_to_many" or "m:m": allowed, but does not result in checks.
Returns
-------
DataFrame
A DataFrame of the two merged objects.
See Also
--------
merge_ordered : Merge with optional filling/interpolation.
merge_asof : Merge on nearest keys.
DataFrame.join : Similar method using indices.
Notes
-----
Support for specifying index levels as the `on`, `left_on`, and
`right_on` parameters was added in version 0.23.0
Support for merging named Series objects was added in version 0.24.0
Examples
--------
>>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
... 'value': [1, 2, 3, 5]})
>>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
... 'value': [5, 6, 7, 8]})
>>> df1
lkey value
0 foo 1
1 bar 2
2 baz 3
3 foo 5
>>> df2
rkey value
0 foo 5
1 bar 6
2 baz 7
3 foo 8
Merge df1 and df2 on the lkey and rkey columns. The value columns have
the default suffixes, _x and _y, appended.
>>> df1.merge(df2, left_on='lkey', right_on='rkey')
lkey value_x rkey value_y
0 foo 1 foo 5
1 foo 1 foo 8
2 foo 5 foo 5
3 foo 5 foo 8
4 bar 2 bar 6
5 baz 3 baz 7
Merge DataFrames df1 and df2 with specified left and right suffixes
appended to any overlapping columns.
>>> df1.merge(df2, left_on='lkey', right_on='rkey',
... suffixes=('_left', '_right'))
lkey value_left rkey value_right
0 foo 1 foo 5
1 foo 1 foo 8
2 foo 5 foo 5
3 foo 5 foo 8
4 bar 2 bar 6
5 baz 3 baz 7
Merge DataFrames df1 and df2, but raise an exception if the DataFrames have
any overlapping columns.
>>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False))
Traceback (most recent call last):
...
ValueError: columns overlap but no suffix specified:
Index(['value'], dtype='object')
>>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]})
>>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]})
>>> df1
a b
0 foo 1
1 bar 2
>>> df2
a c
0 foo 3
1 baz 4
>>> df1.merge(df2, how='inner', on='a')
a b c
0 foo 1 3
>>> df1.merge(df2, how='left', on='a')
a b c
0 foo 1 3.0
1 bar 2 NaN
>>> df1 = pd.DataFrame({'left': ['foo', 'bar']})
>>> df2 = pd.DataFrame({'right': [7, 8]})
>>> df1
left
0 foo
1 bar
>>> df2
right
0 7
1 8
>>> df1.merge(df2, how='cross')
left right
0 foo 7
1 foo 8
2 bar 7
3 bar 8
Return the minimum of the values over the requested axis.
If you want the *index* of the minimum, use ``idxmin``. This is the equivalent of the ``numpy.ndarray`` method ``argmin``.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.
Examples
--------
>>> idx = pd.MultiIndex.from_arrays([
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded animal
warm dog 4
falcon 2
cold fish 0
spider 8
Name: legs, dtype: int64
>>> s.min()
0
Get Modulo of dataframe and other, element-wise (binary operator `mod`).
Equivalent to ``dataframe % other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rmod`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Get the mode(s) of each element along the selected axis.
The mode of a set of values is the value that appears most often.
It can be multiple values.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to iterate over while searching for the mode:
* 0 or 'index' : get mode of each column
* 1 or 'columns' : get mode of each row.
numeric_only : bool, default False
If True, only apply to numeric columns.
dropna : bool, default True
Don't consider counts of NaN/NaT.
Returns
-------
DataFrame
The modes of each column or row.
See Also
--------
Series.mode : Return the highest frequency value in a Series.
Series.value_counts : Return the counts of values in a Series.
Examples
--------
>>> df = pd.DataFrame([('bird', 2, 2),
... ('mammal', 4, np.nan),
... ('arthropod', 8, 0),
... ('bird', 2, np.nan)],
... index=('falcon', 'horse', 'spider', 'ostrich'),
... columns=('species', 'legs', 'wings'))
>>> df
species legs wings
falcon bird 2 2.0
horse mammal 4 NaN
spider arthropod 8 0.0
ostrich bird 2 NaN
By default, missing values are not considered, and the mode of wings
are both 0 and 2. Because the resulting DataFrame has two rows,
the second row of ``species`` and ``legs`` contains ``NaN``.
>>> df.mode()
species legs wings
0 bird 2.0 0.0
1 NaN NaN 2.0
Setting ``dropna=False`` ``NaN`` values are considered and they can be
the mode (like for wings).
>>> df.mode(dropna=False)
species legs wings
0 bird 2 NaN
Setting ``numeric_only=True``, only the mode of numeric columns is
computed, and columns of other types are ignored.
>>> df.mode(numeric_only=True)
legs wings
0 2.0 0.0
1 NaN 2.0
To compute the mode over columns and not rows, use the axis parameter:
>>> df.mode(axis='columns', numeric_only=True)
0 1
falcon 2.0 NaN
horse 4.0 NaN
spider 0.0 8.0
ostrich 2.0 NaN
Get Multiplication of dataframe and other, element-wise (binary operator `mul`).
Equivalent to ``dataframe * other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rmul`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Get Multiplication of dataframe and other, element-wise (binary operator `mul`).
Equivalent to ``dataframe * other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rmul`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
int([x]) -> integer
int(x, base=10) -> integer
Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.
If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
4
Get Not equal to of dataframe and other, element-wise (binary operator `ne`).
Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.
Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.
Parameters
----------
other : scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
Whether to compare by the index (0 or 'index') or columns
(1 or 'columns').
level : int or label
Broadcast across a level, matching Index values on the passed
MultiIndex level.
Returns
-------
DataFrame of bool
Result of the comparison.
See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
inequality elementwise.
Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).
Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df
cost revenue
A 250 100
B 150 250
C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100
cost revenue
A False True
B False False
C True False
>>> df.eq(100)
cost revenue
A False True
B False False
C True False
When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:
>>> df != pd.Series([100, 250], index=["cost", "revenue"])
cost revenue
A True True
B True False
C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
cost revenue
A True False
B True True
C True True
D True True
When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:
>>> df == [250, 100]
cost revenue
A True True
B False False
C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index')
cost revenue
A True False
B False True
C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
... index=['A', 'B', 'C', 'D'])
>>> other
revenue
A 300
B 250
C 100
D 150
>>> df.gt(other)
cost revenue
A False False
B False False
C False True
D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
cost revenue
Q1 A 250 100
B 150 250
C 100 300
Q2 A 150 200
B 300 175
C 220 225
>>> df.le(df_multindex, level=1)
cost revenue
Q1 A True True
B True True
C True True
Q2 A False True
B True False
C True False
Return the first `n` rows ordered by `columns` in descending order.
Return the first `n` rows with the largest values in `columns`, in
descending order. The columns that are not specified are returned as
well, but not used for ordering.
This method is equivalent to
``df.sort_values(columns, ascending=False).head(n)``, but more
performant.
Parameters
----------
n : int
Number of rows to return.
columns : label or list of labels
Column label(s) to order by.
keep : {'first', 'last', 'all'}, default 'first'
Where there are duplicate values:
- ``first`` : prioritize the first occurrence(s)
- ``last`` : prioritize the last occurrence(s)
- ``all`` : do not drop any duplicates, even it means
selecting more than `n` items.
Returns
-------
DataFrame
The first `n` rows ordered by the given columns in descending
order.
See Also
--------
DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in
ascending order.
DataFrame.sort_values : Sort DataFrame by the values.
DataFrame.head : Return the first `n` rows without re-ordering.
Notes
-----
This function cannot be used with all column types. For example, when
specifying columns with `object` or `category` dtypes, ``TypeError`` is
raised.
Examples
--------
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
... 434000, 434000, 337000, 11300,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df
population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
Iceland 337000 17036 IS
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
In the following example, we will use ``nlargest`` to select the three
rows having the largest values in column "population".
>>> df.nlargest(3, 'population')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT
When using ``keep='last'``, ties are resolved in reverse order:
>>> df.nlargest(3, 'population', keep='last')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN
When using ``keep='all'``, all duplicate items are maintained:
>>> df.nlargest(3, 'population', keep='all')
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
To order by the largest values in column "population" and then "GDP",
we can specify multiple columns like in the next example.
>>> df.nlargest(3, ['population', 'GDP'])
population GDP alpha-2
France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA.
Non-missing values get mapped to True. Characters such as empty
strings ``''`` or :attr:`numpy.inf` are not considered NA values
(unless you set ``pandas.options.mode.use_inf_as_na = True``).
NA values, such as None or :attr:`numpy.NaN`, get mapped to False
values.
Returns
-------
DataFrame
Mask of bool values for each element in DataFrame that
indicates whether an element is not an NA value.
See Also
--------
DataFrame.notnull : Alias of notna.
DataFrame.isna : Boolean inverse of notna.
DataFrame.dropna : Omit axes labels with missing values.
notna : Top-level notna.
Examples
--------
Show which entries in a DataFrame are not NA.
>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
... born=[pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... name=['Alfred', 'Batman', ''],
... toy=[None, 'Batmobile', 'Joker']))
>>> df
age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker
>>> df.notna()
age born name toy
0 True False True False
1 True True True True
2 False True True True
Show which entries in a Series are not NA.
>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64
>>> ser.notna()
0 True
1 True
2 False
dtype: bool
DataFrame.notnull is an alias for DataFrame.notna.
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA.
Non-missing values get mapped to True. Characters such as empty
strings ``''`` or :attr:`numpy.inf` are not considered NA values
(unless you set ``pandas.options.mode.use_inf_as_na = True``).
NA values, such as None or :attr:`numpy.NaN`, get mapped to False
values.
Returns
-------
DataFrame
Mask of bool values for each element in DataFrame that
indicates whether an element is not an NA value.
See Also
--------
DataFrame.notnull : Alias of notna.
DataFrame.isna : Boolean inverse of notna.
DataFrame.dropna : Omit axes labels with missing values.
notna : Top-level notna.
Examples
--------
Show which entries in a DataFrame are not NA.
>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
... born=[pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... name=['Alfred', 'Batman', ''],
... toy=[None, 'Batmobile', 'Joker']))
>>> df
age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker
>>> df.notna()
age born name toy
0 True False True False
1 True True True True
2 False True True True
Show which entries in a Series are not NA.
>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0 5.0
1 6.0
2 NaN
dtype: float64
>>> ser.notna()
0 True
1 True
2 False
dtype: bool
Return the first `n` rows ordered by `columns` in ascending order.
Return the first `n` rows with the smallest values in `columns`, in
ascending order. The columns that are not specified are returned as
well, but not used for ordering.
This method is equivalent to
``df.sort_values(columns, ascending=True).head(n)``, but more
performant.
Parameters
----------
n : int
Number of items to retrieve.
columns : list or str
Column name or names to order by.
keep : {'first', 'last', 'all'}, default 'first'
Where there are duplicate values:
- ``first`` : take the first occurrence.
- ``last`` : take the last occurrence.
- ``all`` : do not drop any duplicates, even it means
selecting more than `n` items.
Returns
-------
DataFrame
See Also
--------
DataFrame.nlargest : Return the first `n` rows ordered by `columns` in
descending order.
DataFrame.sort_values : Sort DataFrame by the values.
DataFrame.head : Return the first `n` rows without re-ordering.
Examples
--------
>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
... 434000, 434000, 337000, 337000,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df
population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
Iceland 337000 17036 IS
Nauru 337000 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
In the following example, we will use ``nsmallest`` to select the
three rows having the smallest values in column "population".
>>> df.nsmallest(3, 'population')
population GDP alpha-2
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
Iceland 337000 17036 IS
When using ``keep='last'``, ties are resolved in reverse order:
>>> df.nsmallest(3, 'population', keep='last')
population GDP alpha-2
Anguilla 11300 311 AI
Tuvalu 11300 38 TV
Nauru 337000 182 NR
When using ``keep='all'``, all duplicate items are maintained:
>>> df.nsmallest(3, 'population', keep='all')
population GDP alpha-2
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
Iceland 337000 17036 IS
Nauru 337000 182 NR
To order by the smallest values in column "population" and then "GDP", we can
specify multiple columns like in the next example.
>>> df.nsmallest(3, ['population', 'GDP'])
population GDP alpha-2
Tuvalu 11300 38 TV
Anguilla 11300 311 AI
Nauru 337000 182 NR
Count number of distinct elements in specified axis.
Return Series with number of distinct elements. Can ignore NaN
values.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for
column-wise.
dropna : bool, default True
Don't include NaN in the counts.
Returns
-------
Series
See Also
--------
Series.nunique: Method nunique for Series.
DataFrame.count: Count non-NA cells for each column or row.
Examples
--------
>>> df = pd.DataFrame({'A': [4, 5, 6], 'B': [4, 1, 1]})
>>> df.nunique()
A 3
B 2
dtype: int64
>>> df.nunique(axis=1)
0 1
1 2
2 2
dtype: int64
Synonym for :meth:`DataFrame.fillna` with ``method='ffill'``.
Returns
-------
Series/DataFrame or None
Object with missing values filled or None if ``inplace=True``.
Percentage change between the current and a prior element.
Computes the percentage change from the immediately previous row by
default. This is useful in comparing the percentage of change in a time
series of elements.
Parameters
----------
periods : int, default 1
Periods to shift for forming percent change.
fill_method : str, default 'pad'
How to handle NAs **before** computing percent changes.
limit : int, default None
The number of consecutive NAs to fill before stopping.
freq : DateOffset, timedelta, or str, optional
Increment to use from time series API (e.g. 'M' or BDay()).
**kwargs
Additional keyword arguments are passed into
`DataFrame.shift` or `Series.shift`.
Returns
-------
chg : Series or DataFrame
The same type as the calling object.
See Also
--------
Series.diff : Compute the difference of two elements in a Series.
DataFrame.diff : Compute the difference of two elements in a DataFrame.
Series.shift : Shift the index by some number of periods.
DataFrame.shift : Shift the index by some number of periods.
Examples
--------
**Series**
>>> s = pd.Series([90, 91, 85])
>>> s
0 90
1 91
2 85
dtype: int64
>>> s.pct_change()
0 NaN
1 0.011111
2 -0.065934
dtype: float64
>>> s.pct_change(periods=2)
0 NaN
1 NaN
2 -0.055556
dtype: float64
See the percentage change in a Series where filling NAs with last
valid observation forward to next valid.
>>> s = pd.Series([90, 91, None, 85])
>>> s
0 90.0
1 91.0
2 NaN
3 85.0
dtype: float64
>>> s.pct_change(fill_method='ffill')
0 NaN
1 0.011111
2 0.000000
3 -0.065934
dtype: float64
**DataFrame**
Percentage change in French franc, Deutsche Mark, and Italian lira from
1980-01-01 to 1980-03-01.
>>> df = pd.DataFrame({
... 'FR': [4.0405, 4.0963, 4.3149],
... 'GR': [1.7246, 1.7482, 1.8519],
... 'IT': [804.74, 810.01, 860.13]},
... index=['1980-01-01', '1980-02-01', '1980-03-01'])
>>> df
FR GR IT
1980-01-01 4.0405 1.7246 804.74
1980-02-01 4.0963 1.7482 810.01
1980-03-01 4.3149 1.8519 860.13
>>> df.pct_change()
FR GR IT
1980-01-01 NaN NaN NaN
1980-02-01 0.013810 0.013684 0.006549
1980-03-01 0.053365 0.059318 0.061876
Percentage of change in GOOG and APPL stock volume. Shows computing
the percentage change between columns.
>>> df = pd.DataFrame({
... '2016': [1769950, 30586265],
... '2015': [1500923, 40912316],
... '2014': [1371819, 41403351]},
... index=['GOOG', 'APPL'])
>>> df
2016 2015 2014
GOOG 1769950 1500923 1371819
APPL 30586265 40912316 41403351
>>> df.pct_change(axis='columns', periods=-1)
2016 2015 2014
GOOG 0.179241 0.094112 NaN
APPL -0.252395 -0.011860 NaN
Apply chainable functions that expect Series or DataFrames.
Parameters
----------
func : function
Function to apply to the Series/DataFrame.
``args``, and ``kwargs`` are passed into ``func``.
Alternatively a ``(callable, data_keyword)`` tuple where
``data_keyword`` is a string indicating the keyword of
``callable`` that expects the Series/DataFrame.
args : iterable, optional
Positional arguments passed into ``func``.
kwargs : mapping, optional
A dictionary of keyword arguments passed into ``func``.
Returns
-------
object : the return type of ``func``.
See Also
--------
DataFrame.apply : Apply a function along input axis of DataFrame.
DataFrame.applymap : Apply a function elementwise on a whole DataFrame.
Series.map : Apply a mapping correspondence on a
:class:`~pandas.Series`.
Notes
-----
Use ``.pipe`` when chaining together functions that expect
Series, DataFrames or GroupBy objects. Instead of writing
>>> func(g(h(df), arg1=a), arg2=b, arg3=c) # doctest: +SKIP
You can write
>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe(func, arg2=b, arg3=c)
... ) # doctest: +SKIP
If you have a function that takes the data as (say) the second
argument, pass a tuple indicating which keyword expects the
data. For example, suppose ``f`` takes its data as ``arg2``:
>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe((func, 'arg2'), arg1=a, arg3=c)
... ) # doctest: +SKIP
Return reshaped DataFrame organized by given index / column values.
Reshape data (produce a "pivot" table) based on column values. Uses
unique values from specified `index` / `columns` to form axes of the
resulting DataFrame. This function does not support data
aggregation, multiple values will result in a MultiIndex in the
columns. See the :ref:`User Guide <reshaping>` for more on reshaping.
Parameters
----------
index : str or object or a list of str, optional
Column to use to make new frame's index. If None, uses
existing index.
.. versionchanged:: 1.1.0
Also accept list of index names.
columns : str or object or a list of str
Column to use to make new frame's columns.
.. versionchanged:: 1.1.0
Also accept list of columns names.
values : str, object or a list of the previous, optional
Column(s) to use for populating new frame's values. If not
specified, all remaining columns will be used and the result will
have hierarchically indexed columns.
Returns
-------
DataFrame
Returns reshaped DataFrame.
Raises
------
ValueError:
When there are any `index`, `columns` combinations with multiple
values. `DataFrame.pivot_table` when you need to aggregate.
See Also
--------
DataFrame.pivot_table : Generalization of pivot that can handle
duplicate values for one index/column pair.
DataFrame.unstack : Pivot based on the index values instead of a
column.
wide_to_long : Wide panel to long format. Less flexible but more
user-friendly than melt.
Notes
-----
For finer-tuned control, see hierarchical indexing documentation along
with the related stack/unstack methods.
Reference :ref:`the user guide <reshaping.pivot>` for more examples.
Examples
--------
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
... 'two'],
... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
... 'baz': [1, 2, 3, 4, 5, 6],
... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
>>> df
foo bar baz zoo
0 one A 1 x
1 one B 2 y
2 one C 3 z
3 two A 4 q
4 two B 5 w
5 two C 6 t
>>> df.pivot(index='foo', columns='bar', values='baz')
bar A B C
foo
one 1 2 3
two 4 5 6
>>> df.pivot(index='foo', columns='bar')['baz']
bar A B C
foo
one 1 2 3
two 4 5 6
>>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo'])
baz zoo
bar A B C A B C
foo
one 1 2 3 x y z
two 4 5 6 q w t
You could also assign a list of column names or a list of index names.
>>> df = pd.DataFrame({
... "lev1": [1, 1, 1, 2, 2, 2],
... "lev2": [1, 1, 2, 1, 1, 2],
... "lev3": [1, 2, 1, 2, 1, 2],
... "lev4": [1, 2, 3, 4, 5, 6],
... "values": [0, 1, 2, 3, 4, 5]})
>>> df
lev1 lev2 lev3 lev4 values
0 1 1 1 1 0
1 1 1 2 2 1
2 1 2 1 3 2
3 2 1 2 4 3
4 2 1 1 5 4
5 2 2 2 6 5
>>> df.pivot(index="lev1", columns=["lev2", "lev3"],values="values")
lev2 1 2
lev3 1 2 1 2
lev1
1 0.0 1.0 2.0 NaN
2 4.0 3.0 NaN 5.0
>>> df.pivot(index=["lev1", "lev2"], columns=["lev3"],values="values")
lev3 1 2
lev1 lev2
1 1 0.0 1.0
2 2.0 NaN
2 1 4.0 3.0
2 NaN 5.0
A ValueError is raised if there are any duplicates.
>>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'],
... "bar": ['A', 'A', 'B', 'C'],
... "baz": [1, 2, 3, 4]})
>>> df
foo bar baz
0 one A 1
1 one A 2
2 two B 3
3 two C 4
Notice that the first two rows are the same for our `index`
and `columns` arguments.
>>> df.pivot(index='foo', columns='bar', values='baz')
Traceback (most recent call last):
...
ValueError: Index contains duplicate entries, cannot reshape
Create a spreadsheet-style pivot table as a DataFrame.
The levels in the pivot table will be stored in MultiIndex objects
(hierarchical indexes) on the index and columns of the result DataFrame.
Parameters
----------
values : column to aggregate, optional
index : column, Grouper, array, or list of the previous
If an array is passed, it must be the same length as the data. The
list can contain any of the other types (except list).
Keys to group by on the pivot table index. If an array is passed,
it is being used as the same manner as column values.
columns : column, Grouper, array, or list of the previous
If an array is passed, it must be the same length as the data. The
list can contain any of the other types (except list).
Keys to group by on the pivot table column. If an array is passed,
it is being used as the same manner as column values.
aggfunc : function, list of functions, dict, default numpy.mean
If list of functions passed, the resulting pivot table will have
hierarchical columns whose top level are the function names
(inferred from the function objects themselves)
If dict is passed, the key is column to aggregate and value
is function or list of functions.
fill_value : scalar, default None
Value to replace missing values with (in the resulting pivot table,
after aggregation).
margins : bool, default False
Add all row / columns (e.g. for subtotal / grand totals).
dropna : bool, default True
Do not include columns whose entries are all NaN. If True,
rows with a NaN value in any column will be omitted before
computing margins.
margins_name : str, default 'All'
Name of the row / column that will contain the totals
when margins is True.
observed : bool, default False
This only applies if any of the groupers are Categoricals.
If True: only show observed values for categorical groupers.
If False: show all values for categorical groupers.
.. versionchanged:: 0.25.0
sort : bool, default True
Specifies if the result should be sorted.
.. versionadded:: 1.3.0
Returns
-------
DataFrame
An Excel style pivot table.
See Also
--------
DataFrame.pivot : Pivot without aggregation that can handle
non-numeric data.
DataFrame.melt: Unpivot a DataFrame from wide to long format,
optionally leaving identifiers set.
wide_to_long : Wide panel to long format. Less flexible but more
user-friendly than melt.
Notes
-----
Reference :ref:`the user guide <reshaping.pivot>` for more examples.
Examples
--------
>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
... "bar", "bar", "bar", "bar"],
... "B": ["one", "one", "one", "two", "two",
... "one", "one", "two", "two"],
... "C": ["small", "large", "large", "small",
... "small", "large", "small", "small",
... "large"],
... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]})
>>> df
A B C D E
0 foo one small 1 2
1 foo one large 2 4
2 foo one large 2 5
3 foo two small 3 5
4 foo two small 3 6
5 bar one large 4 6
6 bar one small 5 8
7 bar two small 6 9
8 bar two large 7 9
This first example aggregates values by taking the sum.
>>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
>>> table
C large small
A B
bar one 4.0 5.0
two 7.0 6.0
foo one 4.0 1.0
two NaN 6.0
We can also fill missing values using the `fill_value` parameter.
>>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum, fill_value=0)
>>> table
C large small
A B
bar one 4 5
two 7 6
foo one 4 1
two 0 6
The next example aggregates by taking the mean across multiple columns.
>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
... aggfunc={'D': np.mean,
... 'E': np.mean})
>>> table
D E
A C
bar large 5.500000 7.500000
small 5.500000 8.500000
foo large 2.000000 4.500000
small 2.333333 4.333333
We can also calculate multiple types of aggregations for any given
value column.
>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
... aggfunc={'D': np.mean,
... 'E': [min, max, np.mean]})
>>> table
D E
mean max mean min
A C
bar large 5.500000 9 7.500000 6
small 5.500000 9 8.500000 8
foo large 2.000000 5 4.500000 4
small 2.333333 6 4.333333 2
Make plots of Series or DataFrame.
Uses the backend specified by the
option ``plotting.backend``. By default, matplotlib is used.
Parameters
----------
data : Series or DataFrame
The object for which the method is called.
x : label or position, default None
Only used if data is a DataFrame.
y : label, position or list of label, positions, default None
Allows plotting of one column versus another. Only used if data is a
DataFrame.
kind : str
The kind of plot to produce:
- 'line' : line plot (default)
- 'bar' : vertical bar plot
- 'barh' : horizontal bar plot
- 'hist' : histogram
- 'box' : boxplot
- 'kde' : Kernel Density Estimation plot
- 'density' : same as 'kde'
- 'area' : area plot
- 'pie' : pie plot
- 'scatter' : scatter plot (DataFrame only)
- 'hexbin' : hexbin plot (DataFrame only)
ax : matplotlib axes object, default None
An axes of the current figure.
subplots : bool or sequence of iterables, default False
Whether to group columns into subplots:
- ``False`` : No subplots will be used
- ``True`` : Make separate subplots for each column.
- sequence of iterables of column labels: Create a subplot for each
group of columns. For example `[('a', 'c'), ('b', 'd')]` will
create 2 subplots: one with columns 'a' and 'c', and one
with columns 'b' and 'd'. Remaining columns that aren't specified
will be plotted in additional subplots (one per column).
.. versionadded:: 1.5.0
sharex : bool, default True if ax is None else False
In case ``subplots=True``, share x axis and set some x axis labels
to invisible; defaults to True if ax is None otherwise False if
an ax is passed in; Be aware, that passing in both an ax and
``sharex=True`` will alter all x axis labels for all axis in a figure.
sharey : bool, default False
In case ``subplots=True``, share y axis and set some y axis labels to invisible.
layout : tuple, optional
(rows, columns) for the layout of subplots.
figsize : a tuple (width, height) in inches
Size of a figure object.
use_index : bool, default True
Use index as ticks for x axis.
title : str or list
Title to use for the plot. If a string is passed, print the string
at the top of the figure. If a list is passed and `subplots` is
True, print each item in the list above the corresponding subplot.
grid : bool, default None (matlab style default)
Axis grid lines.
legend : bool or {'reverse'}
Place legend on axis subplots.
style : list or dict
The matplotlib line style per column.
logx : bool or 'sym', default False
Use log scaling or symlog scaling on x axis.
.. versionchanged:: 0.25.0
logy : bool or 'sym' default False
Use log scaling or symlog scaling on y axis.
.. versionchanged:: 0.25.0
loglog : bool or 'sym', default False
Use log scaling or symlog scaling on both x and y axes.
.. versionchanged:: 0.25.0
xticks : sequence
Values to use for the xticks.
yticks : sequence
Values to use for the yticks.
xlim : 2-tuple/list
Set the x limits of the current axes.
ylim : 2-tuple/list
Set the y limits of the current axes.
xlabel : label, optional
Name to use for the xlabel on x-axis. Default uses index name as xlabel, or the
x-column name for planar plots.
.. versionadded:: 1.1.0
.. versionchanged:: 1.2.0
Now applicable to planar plots (`scatter`, `hexbin`).
ylabel : label, optional
Name to use for the ylabel on y-axis. Default will show no ylabel, or the
y-column name for planar plots.
.. versionadded:: 1.1.0
.. versionchanged:: 1.2.0
Now applicable to planar plots (`scatter`, `hexbin`).
rot : int, default None
Rotation for ticks (xticks for vertical, yticks for horizontal
plots).
fontsize : int, default None
Font size for xticks and yticks.
colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that
name from matplotlib.
colorbar : bool, optional
If True, plot colorbar (only relevant for 'scatter' and 'hexbin'
plots).
position : float
Specify relative alignments for bar plot layout.
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5
(center).
table : bool, Series or DataFrame, default False
If True, draw a table using the data in the DataFrame and the data
will be transposed to meet matplotlib's default layout.
If a Series or DataFrame is passed, use passed data to draw a
table.
yerr : DataFrame, Series, array-like, dict and str
See :ref:`Plotting with Error Bars <visualization.errorbars>` for
detail.
xerr : DataFrame, Series, array-like, dict and str
Equivalent to yerr.
stacked : bool, default False in line and bar plots, and True in area plot
If True, create stacked plot.
sort_columns : bool, default False
Sort column names to determine plot ordering.
.. deprecated:: 1.5.0
The `sort_columns` arguments is deprecated and will be removed in a
future version.
secondary_y : bool or sequence, default False
Whether to plot on the secondary y-axis if a list/tuple, which
columns to plot on secondary y-axis.
mark_right : bool, default True
When using a secondary_y axis, automatically mark the column
labels with "(right)" in the legend.
include_bool : bool, default is False
If True, boolean values can be plotted.
backend : str, default None
Backend to use instead of the backend specified in the option
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
specify the ``plotting.backend`` for the whole session, set
``pd.options.plotting.backend``.
.. versionadded:: 1.0.0
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
If the backend is not the default matplotlib one, the return value
will be the object returned by the backend.
Notes
-----
- See matplotlib documentation online for more on this subject
- If `kind` = 'bar' or 'barh', you can specify relative alignments
for bar plot layout by `position` keyword.
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5
(center)
Return item and drop from frame. Raise KeyError if not found.
Parameters
----------
item : label
Label of column to be popped.
Returns
-------
Series
Examples
--------
>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=('name', 'class', 'max_speed'))
>>> df
name class max_speed
0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal NaN
>>> df.pop('class')
0 bird
1 bird
2 mammal
3 mammal
Name: class, dtype: object
>>> df
name max_speed
0 falcon 389.0
1 parrot 24.0
2 lion 80.5
3 monkey NaN
Get Exponential power of dataframe and other, element-wise (binary operator `pow`).
Equivalent to ``dataframe ** other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rpow`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Return the product of the values over the requested axis.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
min_count : int, default 0
The required number of valid values to perform the operation. If fewer than
``min_count`` non-NA values are present the result will be NA.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.
Examples
--------
By default, the product of an empty or all-NA Series is ``1``
>>> pd.Series([], dtype="float64").prod()
1.0
This can be controlled with the ``min_count`` parameter
>>> pd.Series([], dtype="float64").prod(min_count=1)
nan
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
empty series identically.
>>> pd.Series([np.nan]).prod()
1.0
>>> pd.Series([np.nan]).prod(min_count=1)
nan
Return the product of the values over the requested axis.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
min_count : int, default 0
The required number of valid values to perform the operation. If fewer than
``min_count`` non-NA values are present the result will be NA.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.
Examples
--------
By default, the product of an empty or all-NA Series is ``1``
>>> pd.Series([], dtype="float64").prod()
1.0
This can be controlled with the ``min_count`` parameter
>>> pd.Series([], dtype="float64").prod(min_count=1)
nan
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
empty series identically.
>>> pd.Series([np.nan]).prod()
1.0
>>> pd.Series([np.nan]).prod(min_count=1)
nan
Return values at the given quantile over requested axis.
Parameters
----------
q : float or array-like, default 0.5 (50% quantile)
Value between 0 <= q <= 1, the quantile(s) to compute.
axis : {0 or 'index', 1 or 'columns'}, default 0
Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
numeric_only : bool, default True
If False, the quantile of datetime and timedelta data will be
computed as well.
.. deprecated:: 1.5.0
The default value of ``numeric_only`` will be ``False`` in a future
version of pandas.
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
This optional parameter specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`:
* linear: `i + (j - i) * fraction`, where `fraction` is the
fractional part of the index surrounded by `i` and `j`.
* lower: `i`.
* higher: `j`.
* nearest: `i` or `j` whichever is nearest.
* midpoint: (`i` + `j`) / 2.
method : {'single', 'table'}, default 'single'
Whether to compute quantiles per-column ('single') or over all columns
('table'). When 'table', the only allowed interpolation methods are
'nearest', 'lower', and 'higher'.
Returns
-------
Series or DataFrame
If ``q`` is an array, a DataFrame will be returned where the
index is ``q``, the columns are the columns of self, and the
values are the quantiles.
If ``q`` is a float, a Series will be returned where the
index is the columns of self and the values are the quantiles.
See Also
--------
core.window.rolling.Rolling.quantile: Rolling quantile.
numpy.percentile: Numpy function to compute the percentile.
Examples
--------
>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
... columns=['a', 'b'])
>>> df.quantile(.1)
a 1.3
b 3.7
Name: 0.1, dtype: float64
>>> df.quantile([.1, .5])
a b
0.1 1.3 3.7
0.5 2.5 55.0
Specifying `method='table'` will compute the quantile over all columns.
>>> df.quantile(.1, method="table", interpolation="nearest")
a 1
b 1
Name: 0.1, dtype: int64
>>> df.quantile([.1, .5], method="table", interpolation="nearest")
a b
0.1 1 1
0.5 3 100
Specifying `numeric_only=False` will also compute the quantile of
datetime and timedelta data.
>>> df = pd.DataFrame({'A': [1, 2],
... 'B': [pd.Timestamp('2010'),
... pd.Timestamp('2011')],
... 'C': [pd.Timedelta('1 days'),
... pd.Timedelta('2 days')]})
>>> df.quantile(0.5, numeric_only=False)
A 1.5
B 2010-07-02 12:00:00
C 1 days 12:00:00
Name: 0.5, dtype: object
Query the columns of a DataFrame with a boolean expression.
Parameters
----------
expr : str
The query string to evaluate.
You can refer to variables
in the environment by prefixing them with an '@' character like
``@a + b``.
You can refer to column names that are not valid Python variable names
by surrounding them in backticks. Thus, column names containing spaces
or punctuations (besides underscores) or starting with digits must be
surrounded by backticks. (For example, a column named "Area (cm^2)" would
be referenced as ```Area (cm^2)```). Column names which are Python keywords
(like "list", "for", "import", etc) cannot be used.
For example, if one of your columns is called ``a a`` and you want
to sum it with ``b``, your query should be ```a a` + b``.
.. versionadded:: 0.25.0
Backtick quoting introduced.
.. versionadded:: 1.0.0
Expanding functionality of backtick quoting for more than only spaces.
inplace : bool
Whether to modify the DataFrame rather than creating a new one.
**kwargs
See the documentation for :func:`eval` for complete details
on the keyword arguments accepted by :meth:`DataFrame.query`.
Returns
-------
DataFrame or None
DataFrame resulting from the provided query expression or
None if ``inplace=True``.
See Also
--------
eval : Evaluate a string describing operations on
DataFrame columns.
DataFrame.eval : Evaluate a string describing operations on
DataFrame columns.
Notes
-----
The result of the evaluation of this expression is first passed to
:attr:`DataFrame.loc` and if that fails because of a
multidimensional key (e.g., a DataFrame) then the result will be passed
to :meth:`DataFrame.__getitem__`.
This method uses the top-level :func:`eval` function to
evaluate the passed query.
The :meth:`~pandas.DataFrame.query` method uses a slightly
modified Python syntax by default. For example, the ``&`` and ``|``
(bitwise) operators have the precedence of their boolean cousins,
:keyword:`and` and :keyword:`or`. This *is* syntactically valid Python,
however the semantics are different.
You can change the semantics of the expression by passing the keyword
argument ``parser='python'``. This enforces the same semantics as
evaluation in Python space. Likewise, you can pass ``engine='python'``
to evaluate an expression using Python itself as a backend. This is not
recommended as it is inefficient compared to using ``numexpr`` as the
engine.
The :attr:`DataFrame.index` and
:attr:`DataFrame.columns` attributes of the
:class:`~pandas.DataFrame` instance are placed in the query namespace
by default, which allows you to treat both the index and columns of the
frame as a column in the frame.
The identifier ``index`` is used for the frame index; you can also
use the name of the index to identify it in a query. Please note that
Python keywords may not be used as identifiers.
For further details and examples see the ``query`` documentation in
:ref:`indexing <indexing.query>`.
*Backtick quoted variables*
Backtick quoted variables are parsed as literal Python code and
are converted internally to a Python valid identifier.
This can lead to the following problems.
During parsing a number of disallowed characters inside the backtick
quoted string are replaced by strings that are allowed as a Python identifier.
These characters include all operators in Python, the space character, the
question mark, the exclamation mark, the dollar sign, and the euro sign.
For other characters that fall outside the ASCII range (U+0001..U+007F)
and those that are not further specified in PEP 3131,
the query parser will raise an error.
This excludes whitespace different than the space character,
but also the hashtag (as it is used for comments) and the backtick
itself (backtick can also not be escaped).
In a special case, quotes that make a pair around a backtick can
confuse the parser.
For example, ```it's` > `that's``` will raise an error,
as it forms a quoted string (``'s > `that'``) with a backtick inside.
See also the Python documentation about lexical analysis
(https://docs.python.org/3/reference/lexical_analysis.html)
in combination with the source code in :mod:`pandas.core.computation.parsing`.
Examples
--------
>>> df = pd.DataFrame({'A': range(1, 6),
... 'B': range(10, 0, -2),
... 'C C': range(10, 5, -1)})
>>> df
A B C C
0 1 10 10
1 2 8 9
2 3 6 8
3 4 4 7
4 5 2 6
>>> df.query('A > B')
A B C C
4 5 2 6
The previous expression is equivalent to
>>> df[df.A > df.B]
A B C C
4 5 2 6
For columns with spaces in their name, you can use backtick quoting.
>>> df.query('B == `C C`')
A B C C
0 1 10 10
The previous expression is equivalent to
>>> df[df.B == df['C C']]
A B C C
0 1 10 10
Get Addition of dataframe and other, element-wise (binary operator `radd`).
Equivalent to ``other + dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `add`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Compute numerical data ranks (1 through n) along axis.
By default, equal values are assigned a rank that is the average of the
ranks of those values.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
Index to direct ranking.
For `Series` this parameter is unused and defaults to 0.
method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
How to rank the group of records that have the same value (i.e. ties):
* average: average rank of the group
* min: lowest rank in the group
* max: highest rank in the group
* first: ranks assigned in order they appear in the array
* dense: like 'min', but rank always increases by 1 between groups.
numeric_only : bool, optional
For DataFrame objects, rank only numeric columns if set to True.
na_option : {'keep', 'top', 'bottom'}, default 'keep'
How to rank NaN values:
* keep: assign NaN rank to NaN values
* top: assign lowest rank to NaN values
* bottom: assign highest rank to NaN values
ascending : bool, default True
Whether or not the elements should be ranked in ascending order.
pct : bool, default False
Whether or not to display the returned rankings in percentile
form.
Returns
-------
same type as caller
Return a Series or DataFrame with data ranks as values.
See Also
--------
core.groupby.GroupBy.rank : Rank of values within each group.
Examples
--------
>>> df = pd.DataFrame(data={'Animal': ['cat', 'penguin', 'dog',
... 'spider', 'snake'],
... 'Number_legs': [4, 2, 4, 8, np.nan]})
>>> df
Animal Number_legs
0 cat 4.0
1 penguin 2.0
2 dog 4.0
3 spider 8.0
4 snake NaN
Ties are assigned the mean of the ranks (by default) for the group.
>>> s = pd.Series(range(5), index=list("abcde"))
>>> s["d"] = s["b"]
>>> s.rank()
a 1.0
b 2.5
c 4.0
d 2.5
e 5.0
dtype: float64
The following example shows how the method behaves with the above
parameters:
* default_rank: this is the default behaviour obtained without using
any parameter.
* max_rank: setting ``method = 'max'`` the records that have the
same values are ranked using the highest rank (e.g.: since 'cat'
and 'dog' are both in the 2nd and 3rd position, rank 3 is assigned.)
* NA_bottom: choosing ``na_option = 'bottom'``, if there are records
with NaN values they are placed at the bottom of the ranking.
* pct_rank: when setting ``pct = True``, the ranking is expressed as
percentile rank.
>>> df['default_rank'] = df['Number_legs'].rank()
>>> df['max_rank'] = df['Number_legs'].rank(method='max')
>>> df['NA_bottom'] = df['Number_legs'].rank(na_option='bottom')
>>> df['pct_rank'] = df['Number_legs'].rank(pct=True)
>>> df
Animal Number_legs default_rank max_rank NA_bottom pct_rank
0 cat 4.0 2.5 3.0 2.5 0.625
1 penguin 2.0 1.0 1.0 1.0 0.250
2 dog 4.0 2.5 3.0 2.5 0.625
3 spider 8.0 4.0 4.0 4.0 1.000
4 snake NaN NaN NaN 5.0 NaN
Get Floating division of dataframe and other, element-wise (binary operator `rtruediv`).
Equivalent to ``other / dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `truediv`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Conform Series/DataFrame to new index with optional filling logic.
Places NA/NaN in locations having no value in the previous index. A new object
is produced unless the new index is equivalent to the current one and
``copy=False``.
Parameters
----------
keywords for axes : array-like, optional
New labels / index to conform to, should be specified using
keywords. Preferably an Index object to avoid duplicating data.
method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}
Method to use for filling holes in reindexed DataFrame.
Please note: this is only applicable to DataFrames/Series with a
monotonically increasing/decreasing index.
* None (default): don't fill gaps
* pad / ffill: Propagate last valid observation forward to next
valid.
* backfill / bfill: Use next valid observation to fill gap.
* nearest: Use nearest valid observations to fill gap.
copy : bool, default True
Return a new object, even if the passed indexes are the same.
level : int or name
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : scalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any
"compatible" value.
limit : int, default None
Maximum number of consecutive elements to forward or backward fill.
tolerance : optional
Maximum distance between original and new labels for inexact
matches. The values of the index at the matching locations most
satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
Tolerance may be a scalar value, which applies the same tolerance
to all values, or list-like, which applies variable tolerance per
element. List-like includes list, tuple, array, Series, and must be
the same size as the index and its dtype must exactly match the
index's type.
Returns
-------
Series/DataFrame with changed index.
See Also
--------
DataFrame.set_index : Set row labels.
DataFrame.reset_index : Remove row labels or move them to new columns.
DataFrame.reindex_like : Change to same indices as other DataFrame.
Examples
--------
``DataFrame.reindex`` supports two calling conventions
* ``(index=index_labels, columns=column_labels, ...)``
* ``(labels, axis={'index', 'columns'}, ...)``
We *highly* recommend using keyword arguments to clarify your
intent.
Create a dataframe with some fictional data.
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({'http_status': [200, 200, 404, 404, 301],
... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]},
... index=index)
>>> df
http_status response_time
Firefox 200 0.04
Chrome 200 0.02
Safari 404 0.07
IE10 404 0.08
Konqueror 301 1.00
Create a new index and reindex the dataframe. By default
values in the new index that do not have corresponding
records in the dataframe are assigned ``NaN``.
>>> new_index = ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
... 'Chrome']
>>> df.reindex(new_index)
http_status response_time
Safari 404.0 0.07
Iceweasel NaN NaN
Comodo Dragon NaN NaN
IE10 404.0 0.08
Chrome 200.0 0.02
We can fill in the missing values by passing a value to
the keyword ``fill_value``. Because the index is not monotonically
increasing or decreasing, we cannot use arguments to the keyword
``method`` to fill the ``NaN`` values.
>>> df.reindex(new_index, fill_value=0)
http_status response_time
Safari 404 0.07
Iceweasel 0 0.00
Comodo Dragon 0 0.00
IE10 404 0.08
Chrome 200 0.02
>>> df.reindex(new_index, fill_value='missing')
http_status response_time
Safari 404 0.07
Iceweasel missing missing
Comodo Dragon missing missing
IE10 404 0.08
Chrome 200 0.02
We can also reindex the columns.
>>> df.reindex(columns=['http_status', 'user_agent'])
http_status user_agent
Firefox 200 NaN
Chrome 200 NaN
Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN
Or we can use "axis-style" keyword arguments
>>> df.reindex(['http_status', 'user_agent'], axis="columns")
http_status user_agent
Firefox 200 NaN
Chrome 200 NaN
Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN
To further illustrate the filling functionality in
``reindex``, we will create a dataframe with a
monotonically increasing index (for example, a sequence
of dates).
>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
... index=date_index)
>>> df2
prices
2010-01-01 100.0
2010-01-02 101.0
2010-01-03 NaN
2010-01-04 100.0
2010-01-05 89.0
2010-01-06 88.0
Suppose we decide to expand the dataframe to cover a wider
date range.
>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)
prices
2009-12-29 NaN
2009-12-30 NaN
2009-12-31 NaN
2010-01-01 100.0
2010-01-02 101.0
2010-01-03 NaN
2010-01-04 100.0
2010-01-05 89.0
2010-01-06 88.0
2010-01-07 NaN
The index entries that did not have a value in the original data frame
(for example, '2009-12-29') are by default filled with ``NaN``.
If desired, we can fill in the missing values using one of several
options.
For example, to back-propagate the last valid value to fill the ``NaN``
values, pass ``bfill`` as an argument to the ``method`` keyword.
>>> df2.reindex(date_index2, method='bfill')
prices
2009-12-29 100.0
2009-12-30 100.0
2009-12-31 100.0
2010-01-01 100.0
2010-01-02 101.0
2010-01-03 NaN
2010-01-04 100.0
2010-01-05 89.0
2010-01-06 88.0
2010-01-07 NaN
Please note that the ``NaN`` value present in the original dataframe
(at index value 2010-01-03) will not be filled by any of the
value propagation schemes. This is because filling while reindexing
does not look at dataframe values, but only compares the original and
desired indexes. If you do want to fill in the ``NaN`` values present
in the original dataframe, use the ``fillna()`` method.
See the :ref:`user guide <basics.reindexing>` for more.
Return an object with matching indices as other object.
Conform the object to the same index on all axes. Optional
filling logic, placing NaN in locations having no value
in the previous index. A new object is produced unless the
new index is equivalent to the current one and copy=False.
Parameters
----------
other : Object of the same data type
Its row and column indices are used to define the new indices
of this object.
method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}
Method to use for filling holes in reindexed DataFrame.
Please note: this is only applicable to DataFrames/Series with a
monotonically increasing/decreasing index.
* None (default): don't fill gaps
* pad / ffill: propagate last valid observation forward to next
valid
* backfill / bfill: use next valid observation to fill gap
* nearest: use nearest valid observations to fill gap.
copy : bool, default True
Return a new object, even if the passed indexes are the same.
limit : int, default None
Maximum number of consecutive labels to fill for inexact matches.
tolerance : optional
Maximum distance between original and new labels for inexact
matches. The values of the index at the matching locations must
satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
Tolerance may be a scalar value, which applies the same tolerance
to all values, or list-like, which applies variable tolerance per
element. List-like includes list, tuple, array, Series, and must be
the same size as the index and its dtype must exactly match the
index's type.
Returns
-------
Series or DataFrame
Same type as caller, but with changed indices on each axis.
See Also
--------
DataFrame.set_index : Set row labels.
DataFrame.reset_index : Remove row labels or move them to new columns.
DataFrame.reindex : Change to new indices or expand indices.
Notes
-----
Same as calling
``.reindex(index=other.index, columns=other.columns,...)``.
Examples
--------
>>> df1 = pd.DataFrame([[24.3, 75.7, 'high'],
... [31, 87.8, 'high'],
... [22, 71.6, 'medium'],
... [35, 95, 'medium']],
... columns=['temp_celsius', 'temp_fahrenheit',
... 'windspeed'],
... index=pd.date_range(start='2014-02-12',
... end='2014-02-15', freq='D'))
>>> df1
temp_celsius temp_fahrenheit windspeed
2014-02-12 24.3 75.7 high
2014-02-13 31.0 87.8 high
2014-02-14 22.0 71.6 medium
2014-02-15 35.0 95.0 medium
>>> df2 = pd.DataFrame([[28, 'low'],
... [30, 'low'],
... [35.1, 'medium']],
... columns=['temp_celsius', 'windspeed'],
... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13',
... '2014-02-15']))
>>> df2
temp_celsius windspeed
2014-02-12 28.0 low
2014-02-13 30.0 low
2014-02-15 35.1 medium
>>> df2.reindex_like(df1)
temp_celsius temp_fahrenheit windspeed
2014-02-12 28.0 NaN low
2014-02-13 30.0 NaN low
2014-02-14 NaN NaN NaN
2014-02-15 35.1 NaN medium
Alter axes labels.
Function / dict values must be unique (1-to-1). Labels not contained in
a dict / Series will be left as-is. Extra labels listed don't throw an
error.
See the :ref:`user guide <basics.rename>` for more.
Parameters
----------
mapper : dict-like or function
Dict-like or function transformations to apply to
that axis' values. Use either ``mapper`` and ``axis`` to
specify the axis to target with ``mapper``, or ``index`` and
``columns``.
index : dict-like or function
Alternative to specifying axis (``mapper, axis=0``
is equivalent to ``index=mapper``).
columns : dict-like or function
Alternative to specifying axis (``mapper, axis=1``
is equivalent to ``columns=mapper``).
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis to target with ``mapper``. Can be either the axis name
('index', 'columns') or number (0, 1). The default is 'index'.
copy : bool, default True
Also copy underlying data.
inplace : bool, default False
Whether to modify the DataFrame rather than creating a new one.
If True then value of copy is ignored.
level : int or level name, default None
In case of a MultiIndex, only rename labels in the specified
level.
errors : {'ignore', 'raise'}, default 'ignore'
If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`,
or `columns` contains labels that are not present in the Index
being transformed.
If 'ignore', existing keys will be renamed and extra keys will be
ignored.
Returns
-------
DataFrame or None
DataFrame with the renamed axis labels or None if ``inplace=True``.
Raises
------
KeyError
If any of the labels is not found in the selected axis and
"errors='raise'".
See Also
--------
DataFrame.rename_axis : Set the name of the axis.
Examples
--------
``DataFrame.rename`` supports two calling conventions
* ``(index=index_mapper, columns=columns_mapper, ...)``
* ``(mapper, axis={'index', 'columns'}, ...)``
We *highly* recommend using keyword arguments to clarify your
intent.
Rename columns using a mapping:
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(columns={"A": "a", "B": "c"})
a c
0 1 4
1 2 5
2 3 6
Rename index using a mapping:
>>> df.rename(index={0: "x", 1: "y", 2: "z"})
A B
x 1 4
y 2 5
z 3 6
Cast index labels to a different type:
>>> df.index
RangeIndex(start=0, stop=3, step=1)
>>> df.rename(index=str).index
Index(['0', '1', '2'], dtype='object')
>>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise")
Traceback (most recent call last):
KeyError: ['C'] not found in axis
Using axis-style parameters:
>>> df.rename(str.lower, axis='columns')
a b
0 1 4
1 2 5
2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index')
A B
0 1 4
2 2 5
4 3 6
Set the name of the axis for the index or columns.
Parameters
----------
mapper : scalar, list-like, optional
Value to set the axis name attribute.
index, columns : scalar, list-like, dict-like or function, optional
A scalar, list-like, dict-like or functions transformations to
apply to that axis' values.
Note that the ``columns`` parameter is not allowed if the
object is a Series. This parameter only apply for DataFrame
type objects.
Use either ``mapper`` and ``axis`` to
specify the axis to target with ``mapper``, or ``index``
and/or ``columns``.
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to rename. For `Series` this parameter is unused and defaults to 0.
copy : bool, default True
Also copy underlying data.
inplace : bool, default False
Modifies the object directly, instead of creating a new Series
or DataFrame.
Returns
-------
Series, DataFrame, or None
The same type as the caller or None if ``inplace=True``.
See Also
--------
Series.rename : Alter Series index labels or name.
DataFrame.rename : Alter DataFrame index labels or name.
Index.rename : Set new names on index.
Notes
-----
``DataFrame.rename_axis`` supports two calling conventions
* ``(index=index_mapper, columns=columns_mapper, ...)``
* ``(mapper, axis={'index', 'columns'}, ...)``
The first calling convention will only modify the names of
the index and/or the names of the Index object that is the columns.
In this case, the parameter ``copy`` is ignored.
The second calling convention will modify the names of the
corresponding index if mapper is a list or a scalar.
However, if mapper is dict-like or a function, it will use the
deprecated behavior of modifying the axis *labels*.
We *highly* recommend using keyword arguments to clarify your
intent.
Examples
--------
**Series**
>>> s = pd.Series(["dog", "cat", "monkey"])
>>> s
0 dog
1 cat
2 monkey
dtype: object
>>> s.rename_axis("animal")
animal
0 dog
1 cat
2 monkey
dtype: object
**DataFrame**
>>> df = pd.DataFrame({"num_legs": [4, 4, 2],
... "num_arms": [0, 0, 2]},
... ["dog", "cat", "monkey"])
>>> df
num_legs num_arms
dog 4 0
cat 4 0
monkey 2 2
>>> df = df.rename_axis("animal")
>>> df
num_legs num_arms
animal
dog 4 0
cat 4 0
monkey 2 2
>>> df = df.rename_axis("limbs", axis="columns")
>>> df
limbs num_legs num_arms
animal
dog 4 0
cat 4 0
monkey 2 2
**MultiIndex**
>>> df.index = pd.MultiIndex.from_product([['mammal'],
... ['dog', 'cat', 'monkey']],
... names=['type', 'name'])
>>> df
limbs num_legs num_arms
type name
mammal dog 4 0
cat 4 0
monkey 2 2
>>> df.rename_axis(index={'type': 'class'})
limbs num_legs num_arms
class name
mammal dog 4 0
cat 4 0
monkey 2 2
>>> df.rename_axis(columns=str.upper)
LIMBS num_legs num_arms
type name
mammal dog 4 0
cat 4 0
monkey 2 2
Rearrange index levels using input order. May not drop or duplicate levels.
Parameters
----------
order : list of int or list of str
List representing new level order. Reference level by number
(position) or by key (label).
axis : {0 or 'index', 1 or 'columns'}, default 0
Where to reorder levels.
Returns
-------
DataFrame
Examples
--------
>>> data = {
... "class": ["Mammals", "Mammals", "Reptiles"],
... "diet": ["Omnivore", "Carnivore", "Carnivore"],
... "species": ["Humans", "Dogs", "Snakes"],
... }
>>> df = pd.DataFrame(data, columns=["class", "diet", "species"])
>>> df = df.set_index(["class", "diet"])
>>> df
species
class diet
Mammals Omnivore Humans
Carnivore Dogs
Reptiles Carnivore Snakes
Let's reorder the levels of the index:
>>> df.reorder_levels(["diet", "class"])
species
diet class
Omnivore Mammals Humans
Carnivore Mammals Dogs
Reptiles Snakes
Replace values given in `to_replace` with `value`.
Values of the DataFrame are replaced with other values dynamically.
This differs from updating with ``.loc`` or ``.iloc``, which require
you to specify a location to update with some value.
Parameters
----------
to_replace : str, regex, list, dict, Series, int, float, or None
How to find the values that will be replaced.
* numeric, str or regex:
- numeric: numeric values equal to `to_replace` will be
replaced with `value`
- str: string exactly matching `to_replace` will be replaced
with `value`
- regex: regexs matching `to_replace` will be replaced with
`value`
* list of str, regex, or numeric:
- First, if `to_replace` and `value` are both lists, they
**must** be the same length.
- Second, if ``regex=True`` then all of the strings in **both**
lists will be interpreted as regexs otherwise they will match
directly. This doesn't matter much for `value` since there
are only a few possible substitution regexes you can use.
- str, regex and numeric rules apply as above.
* dict:
- Dicts can be used to specify different replacement values
for different existing values. For example,
``{'a': 'b', 'y': 'z'}`` replaces the value 'a' with 'b' and
'y' with 'z'. To use a dict in this way, the optional `value`
parameter should not be given.
- For a DataFrame a dict can specify that different values
should be replaced in different columns. For example,
``{'a': 1, 'b': 'z'}`` looks for the value 1 in column 'a'
and the value 'z' in column 'b' and replaces these values
with whatever is specified in `value`. The `value` parameter
should not be ``None`` in this case. You can treat this as a
special case of passing two lists except that you are
specifying the column to search in.
- For a DataFrame nested dictionaries, e.g.,
``{'a': {'b': np.nan}}``, are read as follows: look in column
'a' for the value 'b' and replace it with NaN. The optional `value`
parameter should not be specified to use a nested dict in this
way. You can nest regular expressions as well. Note that
column names (the top-level dictionary keys in a nested
dictionary) **cannot** be regular expressions.
* None:
- This means that the `regex` argument must be a string,
compiled regular expression, or list, dict, ndarray or
Series of such elements. If `value` is also ``None`` then
this **must** be a nested dictionary or Series.
See the examples section for examples of each of these.
value : scalar, dict, list, str, regex, default None
Value to replace any values matching `to_replace` with.
For a DataFrame a dict of values can be used to specify which
value to use for each column (columns not in the dict will not be
filled). Regular expressions, strings and lists or dicts of such
objects are also allowed.
inplace : bool, default False
Whether to modify the DataFrame rather than creating a new one.
limit : int, default None
Maximum size gap to forward or backward fill.
regex : bool or same types as `to_replace`, default False
Whether to interpret `to_replace` and/or `value` as regular
expressions. If this is ``True`` then `to_replace` *must* be a
string. Alternatively, this could be a regular expression or a
list, dict, or array of regular expressions in which case
`to_replace` must be ``None``.
method : {'pad', 'ffill', 'bfill'}
The method to use when for replacement, when `to_replace` is a
scalar, list or tuple and `value` is ``None``.
.. versionchanged:: 0.23.0
Added to DataFrame.
Returns
-------
DataFrame
Object after replacement.
Raises
------
AssertionError
* If `regex` is not a ``bool`` and `to_replace` is not
``None``.
TypeError
* If `to_replace` is not a scalar, array-like, ``dict``, or ``None``
* If `to_replace` is a ``dict`` and `value` is not a ``list``,
``dict``, ``ndarray``, or ``Series``
* If `to_replace` is ``None`` and `regex` is not compilable
into a regular expression or is a list, dict, ndarray, or
Series.
* When replacing multiple ``bool`` or ``datetime64`` objects and
the arguments to `to_replace` does not match the type of the
value being replaced
ValueError
* If a ``list`` or an ``ndarray`` is passed to `to_replace` and
`value` but they are not the same length.
See Also
--------
DataFrame.fillna : Fill NA values.
DataFrame.where : Replace values based on boolean condition.
Series.str.replace : Simple string replacement.
Notes
-----
* Regex substitution is performed under the hood with ``re.sub``. The
rules for substitution for ``re.sub`` are the same.
* Regular expressions will only substitute on strings, meaning you
cannot provide, for example, a regular expression matching floating
point numbers and expect the columns in your frame that have a
numeric dtype to be matched. However, if those floating point
numbers *are* strings, then you can do this.
* This method has *a lot* of options. You are encouraged to experiment
and play with this method to gain intuition about how it works.
* When dict is used as the `to_replace` value, it is like
key(s) in the dict are the to_replace part and
value(s) in the dict are the value parameter.
Examples
--------
**Scalar `to_replace` and `value`**
>>> s = pd.Series([1, 2, 3, 4, 5])
>>> s.replace(1, 5)
0 5
1 2
2 3
3 4
4 5
dtype: int64
>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
... 'B': [5, 6, 7, 8, 9],
... 'C': ['a', 'b', 'c', 'd', 'e']})
>>> df.replace(0, 5)
A B C
0 5 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e
**List-like `to_replace`**
>>> df.replace([0, 1, 2, 3], 4)
A B C
0 4 5 a
1 4 6 b
2 4 7 c
3 4 8 d
4 4 9 e
>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1])
A B C
0 4 5 a
1 3 6 b
2 2 7 c
3 1 8 d
4 4 9 e
>>> s.replace([1, 2], method='bfill')
0 3
1 3
2 3
3 4
4 5
dtype: int64
**dict-like `to_replace`**
>>> df.replace({0: 10, 1: 100})
A B C
0 10 5 a
1 100 6 b
2 2 7 c
3 3 8 d
4 4 9 e
>>> df.replace({'A': 0, 'B': 5}, 100)
A B C
0 100 100 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e
>>> df.replace({'A': {0: 100, 4: 400}})
A B C
0 100 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 400 9 e
**Regular expression `to_replace`**
>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
... 'B': ['abc', 'bar', 'xyz']})
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True)
A B
0 new abc
1 foo new
2 bait xyz
>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
A B
0 new abc
1 foo bar
2 bait xyz
>>> df.replace(regex=r'^ba.$', value='new')
A B
0 new abc
1 foo new
2 bait xyz
>>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'})
A B
0 new abc
1 xyz new
2 bait xyz
>>> df.replace(regex=[r'^ba.$', 'foo'], value='new')
A B
0 new abc
1 new new
2 bait xyz
Compare the behavior of ``s.replace({'a': None})`` and
``s.replace('a', None)`` to understand the peculiarities
of the `to_replace` parameter:
>>> s = pd.Series([10, 'a', 'a', 'b', 'a'])
When one uses a dict as the `to_replace` value, it is like the
value(s) in the dict are equal to the `value` parameter.
``s.replace({'a': None})`` is equivalent to
``s.replace(to_replace={'a': None}, value=None, method=None)``:
>>> s.replace({'a': None})
0 10
1 None
2 None
3 b
4 None
dtype: object
When ``value`` is not explicitly passed and `to_replace` is a scalar, list
or tuple, `replace` uses the method parameter (default 'pad') to do the
replacement. So this is why the 'a' values are being replaced by 10
in rows 1 and 2 and 'b' in row 4 in this case.
>>> s.replace('a')
0 10
1 10
2 10
3 b
4 b
dtype: object
On the other hand, if ``None`` is explicitly passed for ``value``, it will
be respected:
>>> s.replace('a', None)
0 10
1 None
2 None
3 b
4 None
dtype: object
.. versionchanged:: 1.4.0
Previously the explicit ``None`` was silently ignored.
Resample time-series data.
Convenience method for frequency conversion and resampling of time series.
The object must have a datetime-like index (`DatetimeIndex`, `PeriodIndex`,
or `TimedeltaIndex`), or the caller must pass the label of a datetime-like
series/index to the ``on``/``level`` keyword parameter.
Parameters
----------
rule : DateOffset, Timedelta or str
The offset string or object representing target conversion.
axis : {0 or 'index', 1 or 'columns'}, default 0
Which axis to use for up- or down-sampling. For `Series` this parameter
is unused and defaults to 0. Must be
`DatetimeIndex`, `TimedeltaIndex` or `PeriodIndex`.
closed : {'right', 'left'}, default None
Which side of bin interval is closed. The default is 'left'
for all frequency offsets except for 'M', 'A', 'Q', 'BM',
'BA', 'BQ', and 'W' which all have a default of 'right'.
label : {'right', 'left'}, default None
Which bin edge label to label bucket with. The default is 'left'
for all frequency offsets except for 'M', 'A', 'Q', 'BM',
'BA', 'BQ', and 'W' which all have a default of 'right'.
convention : {'start', 'end', 's', 'e'}, default 'start'
For `PeriodIndex` only, controls whether to use the start or
end of `rule`.
kind : {'timestamp', 'period'}, optional, default None
Pass 'timestamp' to convert the resulting index to a
`DateTimeIndex` or 'period' to convert it to a `PeriodIndex`.
By default the input representation is retained.
loffset : timedelta, default None
Adjust the resampled time labels.
.. deprecated:: 1.1.0
You should add the loffset to the `df.index` after the resample.
See below.
base : int, default 0
For frequencies that evenly subdivide 1 day, the "origin" of the
aggregated intervals. For example, for '5min' frequency, base could
range from 0 through 4. Defaults to 0.
.. deprecated:: 1.1.0
The new arguments that you should use are 'offset' or 'origin'.
on : str, optional
For a DataFrame, column to use instead of index for resampling.
Column must be datetime-like.
level : str or int, optional
For a MultiIndex, level (name or number) to use for
resampling. `level` must be datetime-like.
origin : Timestamp or str, default 'start_day'
The timestamp on which to adjust the grouping. The timezone of origin
must match the timezone of the index.
If string, must be one of the following:
- 'epoch': `origin` is 1970-01-01
- 'start': `origin` is the first value of the timeseries
- 'start_day': `origin` is the first day at midnight of the timeseries
.. versionadded:: 1.1.0
- 'end': `origin` is the last value of the timeseries
- 'end_day': `origin` is the ceiling midnight of the last day
.. versionadded:: 1.3.0
offset : Timedelta or str, default is None
An offset timedelta added to the origin.
.. versionadded:: 1.1.0
group_keys : bool, optional
Whether to include the group keys in the result index when using
``.apply()`` on the resampled object. Not specifying ``group_keys``
will retain values-dependent behavior from pandas 1.4
and earlier (see :ref:`pandas 1.5.0 Release notes
<whatsnew_150.enhancements.resample_group_keys>`
for examples). In a future version of pandas, the behavior will
default to the same as specifying ``group_keys=False``.
.. versionadded:: 1.5.0
Returns
-------
pandas.core.Resampler
:class:`~pandas.core.Resampler` object.
See Also
--------
Series.resample : Resample a Series.
DataFrame.resample : Resample a DataFrame.
groupby : Group DataFrame by mapping, function, label, or list of labels.
asfreq : Reindex a DataFrame with the given frequency without grouping.
Notes
-----
See the `user guide
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling>`__
for more.
To learn more about the offset strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects>`__.
Examples
--------
Start by creating a series with 9 one minute timestamps.
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64
Downsample the series into 3 minute bins and sum the values
of the timestamps falling into a bin.
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64
Downsample the series into 3 minute bins as above, but label each
bin using the right edge instead of the left. Please note that the
value in the bucket used as the label is not included in the bucket,
which it labels. For example, in the original series the
bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed
value in the resampled bucket with the label ``2000-01-01 00:03:00``
does not include 3 (if it did, the summed value would be 6, not 3).
To include this value close the right side of the bin interval as
illustrated in the example below this one.
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64
Downsample the series into 3 minute bins as above, but close the right
side of the bin interval.
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
Upsample the series into 30 second bins.
>>> series.resample('30S').asfreq()[0:5] # Select first 5 rows
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64
Upsample the series into 30 second bins and fill the ``NaN``
values using the ``ffill`` method.
>>> series.resample('30S').ffill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
Upsample the series into 30 second bins and fill the
``NaN`` values using the ``bfill`` method.
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
Pass a custom function via ``apply``
>>> def custom_resampler(arraylike):
... return np.sum(arraylike) + 5
...
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64
For a Series with a PeriodIndex, the keyword `convention` can be
used to control whether to use the start or end of `rule`.
Resample a year by quarter using 'start' `convention`. Values are
assigned to the first quarter of the period.
>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
... freq='A',
... periods=2))
>>> s
2012 1
2013 2
Freq: A-DEC, dtype: int64
>>> s.resample('Q', convention='start').asfreq()
2012Q1 1.0
2012Q2 NaN
2012Q3 NaN
2012Q4 NaN
2013Q1 2.0
2013Q2 NaN
2013Q3 NaN
2013Q4 NaN
Freq: Q-DEC, dtype: float64
Resample quarters by month using 'end' `convention`. Values are
assigned to the last month of the period.
>>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01',
... freq='Q',
... periods=4))
>>> q
2018Q1 1
2018Q2 2
2018Q3 3
2018Q4 4
Freq: Q-DEC, dtype: int64
>>> q.resample('M', convention='end').asfreq()
2018-03 1.0
2018-04 NaN
2018-05 NaN
2018-06 2.0
2018-07 NaN
2018-08 NaN
2018-09 3.0
2018-10 NaN
2018-11 NaN
2018-12 4.0
Freq: M, dtype: float64
For DataFrame objects, the keyword `on` can be used to specify the
column instead of the index for resampling.
>>> d = {'price': [10, 11, 9, 13, 14, 18, 17, 19],
... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}
>>> df = pd.DataFrame(d)
>>> df['week_starting'] = pd.date_range('01/01/2018',
... periods=8,
... freq='W')
>>> df
price volume week_starting
0 10 50 2018-01-07
1 11 60 2018-01-14
2 9 40 2018-01-21
3 13 100 2018-01-28
4 14 50 2018-02-04
5 18 100 2018-02-11
6 17 40 2018-02-18
7 19 50 2018-02-25
>>> df.resample('M', on='week_starting').mean()
price volume
week_starting
2018-01-31 10.75 62.5
2018-02-28 17.00 60.0
For a DataFrame with MultiIndex, the keyword `level` can be used to
specify on which level the resampling needs to take place.
>>> days = pd.date_range('1/1/2000', periods=4, freq='D')
>>> d2 = {'price': [10, 11, 9, 13, 14, 18, 17, 19],
... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}
>>> df2 = pd.DataFrame(
... d2,
... index=pd.MultiIndex.from_product(
... [days, ['morning', 'afternoon']]
... )
... )
>>> df2
price volume
2000-01-01 morning 10 50
afternoon 11 60
2000-01-02 morning 9 40
afternoon 13 100
2000-01-03 morning 14 50
afternoon 18 100
2000-01-04 morning 17 40
afternoon 19 50
>>> df2.resample('D', level=0).sum()
price volume
2000-01-01 21 110
2000-01-02 22 140
2000-01-03 32 150
2000-01-04 36 90
If you want to adjust the start of the bins based on a fixed timestamp:
>>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00'
>>> rng = pd.date_range(start, end, freq='7min')
>>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng)
>>> ts
2000-10-01 23:30:00 0
2000-10-01 23:37:00 3
2000-10-01 23:44:00 6
2000-10-01 23:51:00 9
2000-10-01 23:58:00 12
2000-10-02 00:05:00 15
2000-10-02 00:12:00 18
2000-10-02 00:19:00 21
2000-10-02 00:26:00 24
Freq: 7T, dtype: int64
>>> ts.resample('17min').sum()
2000-10-01 23:14:00 0
2000-10-01 23:31:00 9
2000-10-01 23:48:00 21
2000-10-02 00:05:00 54
2000-10-02 00:22:00 24
Freq: 17T, dtype: int64
>>> ts.resample('17min', origin='epoch').sum()
2000-10-01 23:18:00 0
2000-10-01 23:35:00 18
2000-10-01 23:52:00 27
2000-10-02 00:09:00 39
2000-10-02 00:26:00 24
Freq: 17T, dtype: int64
>>> ts.resample('17min', origin='2000-01-01').sum()
2000-10-01 23:24:00 3
2000-10-01 23:41:00 15
2000-10-01 23:58:00 45
2000-10-02 00:15:00 45
Freq: 17T, dtype: int64
If you want to adjust the start of the bins with an `offset` Timedelta, the two
following lines are equivalent:
>>> ts.resample('17min', origin='start').sum()
2000-10-01 23:30:00 9
2000-10-01 23:47:00 21
2000-10-02 00:04:00 54
2000-10-02 00:21:00 24
Freq: 17T, dtype: int64
>>> ts.resample('17min', offset='23h30min').sum()
2000-10-01 23:30:00 9
2000-10-01 23:47:00 21
2000-10-02 00:04:00 54
2000-10-02 00:21:00 24
Freq: 17T, dtype: int64
If you want to take the largest Timestamp as the end of the bins:
>>> ts.resample('17min', origin='end').sum()
2000-10-01 23:35:00 0
2000-10-01 23:52:00 18
2000-10-02 00:09:00 27
2000-10-02 00:26:00 63
Freq: 17T, dtype: int64
In contrast with the `start_day`, you can use `end_day` to take the ceiling
midnight of the largest Timestamp as the end of the bins and drop the bins
not containing data:
>>> ts.resample('17min', origin='end_day').sum()
2000-10-01 23:38:00 3
2000-10-01 23:55:00 15
2000-10-02 00:12:00 45
2000-10-02 00:29:00 45
Freq: 17T, dtype: int64
To replace the use of the deprecated `base` argument, you can now use `offset`,
in this example it is equivalent to have `base=2`:
>>> ts.resample('17min', offset='2min').sum()
2000-10-01 23:16:00 0
2000-10-01 23:33:00 9
2000-10-01 23:50:00 36
2000-10-02 00:07:00 39
2000-10-02 00:24:00 24
Freq: 17T, dtype: int64
To replace the use of the deprecated `loffset` argument:
>>> from pandas.tseries.frequencies import to_offset
>>> loffset = '19min'
>>> ts_out = ts.resample('17min').sum()
>>> ts_out.index = ts_out.index + to_offset(loffset)
>>> ts_out
2000-10-01 23:33:00 0
2000-10-01 23:50:00 9
2000-10-02 00:07:00 21
2000-10-02 00:24:00 54
2000-10-02 00:41:00 24
Freq: 17T, dtype: int64
Reset the index, or a level of it.
Reset the index of the DataFrame, and use the default one instead.
If the DataFrame has a MultiIndex, this method can remove one or more
levels.
Parameters
----------
level : int, str, tuple, or list, default None
Only remove the given levels from the index. Removes all levels by
default.
drop : bool, default False
Do not try to insert index into dataframe columns. This resets
the index to the default integer index.
inplace : bool, default False
Whether to modify the DataFrame rather than creating a new one.
col_level : int or str, default 0
If the columns have multiple levels, determines which level the
labels are inserted into. By default it is inserted into the first
level.
col_fill : object, default ''
If the columns have multiple levels, determines how the other
levels are named. If None then the index name is repeated.
allow_duplicates : bool, optional, default lib.no_default
Allow duplicate column labels to be created.
.. versionadded:: 1.5.0
names : int, str or 1-dimensional list, default None
Using the given string, rename the DataFrame column which contains the
index data. If the DataFrame has a MultiIndex, this has to be a list or
tuple with length equal to the number of levels.
.. versionadded:: 1.5.0
Returns
-------
DataFrame or None
DataFrame with the new index or None if ``inplace=True``.
See Also
--------
DataFrame.set_index : Opposite of reset_index.
DataFrame.reindex : Change to new indices or expand indices.
DataFrame.reindex_like : Change to same indices as other DataFrame.
Examples
--------
>>> df = pd.DataFrame([('bird', 389.0),
... ('bird', 24.0),
... ('mammal', 80.5),
... ('mammal', np.nan)],
... index=['falcon', 'parrot', 'lion', 'monkey'],
... columns=('class', 'max_speed'))
>>> df
class max_speed
falcon bird 389.0
parrot bird 24.0
lion mammal 80.5
monkey mammal NaN
When we reset the index, the old index is added as a column, and a
new sequential index is used:
>>> df.reset_index()
index class max_speed
0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal NaN
We can use the `drop` parameter to avoid the old index being added as
a column:
>>> df.reset_index(drop=True)
class max_speed
0 bird 389.0
1 bird 24.0
2 mammal 80.5
3 mammal NaN
You can also use `reset_index` with `MultiIndex`.
>>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'),
... ('bird', 'parrot'),
... ('mammal', 'lion'),
... ('mammal', 'monkey')],
... names=['class', 'name'])
>>> columns = pd.MultiIndex.from_tuples([('speed', 'max'),
... ('species', 'type')])
>>> df = pd.DataFrame([(389.0, 'fly'),
... ( 24.0, 'fly'),
... ( 80.5, 'run'),
... (np.nan, 'jump')],
... index=index,
... columns=columns)
>>> df
speed species
max type
class name
bird falcon 389.0 fly
parrot 24.0 fly
mammal lion 80.5 run
monkey NaN jump
Using the `names` parameter, choose a name for the index column:
>>> df.reset_index(names=['classes', 'names'])
classes names speed species
max type
0 bird falcon 389.0 fly
1 bird parrot 24.0 fly
2 mammal lion 80.5 run
3 mammal monkey NaN jump
If the index has multiple levels, we can reset a subset of them:
>>> df.reset_index(level='class')
class speed species
max type
name
falcon bird 389.0 fly
parrot bird 24.0 fly
lion mammal 80.5 run
monkey mammal NaN jump
If we are not dropping the index, by default, it is placed in the top
level. We can place it in another level:
>>> df.reset_index(level='class', col_level=1)
speed species
class max type
name
falcon bird 389.0 fly
parrot bird 24.0 fly
lion mammal 80.5 run
monkey mammal NaN jump
When the index is inserted under another level, we can specify under
which one with the parameter `col_fill`:
>>> df.reset_index(level='class', col_level=1, col_fill='species')
species speed species
class max type
name
falcon bird 389.0 fly
parrot bird 24.0 fly
lion mammal 80.5 run
monkey mammal NaN jump
If we specify a nonexistent level for `col_fill`, it is created:
>>> df.reset_index(level='class', col_level=1, col_fill='genus')
genus speed species
class max type
name
falcon bird 389.0 fly
parrot bird 24.0 fly
lion mammal 80.5 run
monkey mammal NaN jump
Get Integer division of dataframe and other, element-wise (binary operator `rfloordiv`).
Equivalent to ``other // dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `floordiv`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Get Modulo of dataframe and other, element-wise (binary operator `rmod`).
Equivalent to ``other % dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `mod`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Get Multiplication of dataframe and other, element-wise (binary operator `rmul`).
Equivalent to ``other * dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `mul`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Provide rolling window calculations.
Parameters
----------
window : int, offset, or BaseIndexer subclass
Size of the moving window.
If an integer, the fixed number of observations used for
each window.
If an offset, the time period of each window. Each
window will be a variable sized based on the observations included in
the time-period. This is only valid for datetimelike indexes.
To learn more about the offsets & frequency strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
If a BaseIndexer subclass, the window boundaries
based on the defined ``get_window_bounds`` method. Additional rolling
keyword arguments, namely ``min_periods``, ``center``, ``closed`` and
``step`` will be passed to ``get_window_bounds``.
min_periods : int, default None
Minimum number of observations in window required to have a value;
otherwise, result is ``np.nan``.
For a window that is specified by an offset, ``min_periods`` will default to 1.
For a window that is specified by an integer, ``min_periods`` will default
to the size of the window.
center : bool, default False
If False, set the window labels as the right edge of the window index.
If True, set the window labels as the center of the window index.
win_type : str, default None
If ``None``, all points are evenly weighted.
If a string, it must be a valid `scipy.signal window function
<https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows>`__.
Certain Scipy window types require additional parameters to be passed
in the aggregation function. The additional parameters must match
the keywords specified in the Scipy window type method signature.
on : str, optional
For a DataFrame, a column label or Index level on which
to calculate the rolling window, rather than the DataFrame's index.
Provided integer column is ignored and excluded from result since
an integer index is not used to calculate the rolling window.
axis : int or str, default 0
If ``0`` or ``'index'``, roll across the rows.
If ``1`` or ``'columns'``, roll across the columns.
For `Series` this parameter is unused and defaults to 0.
closed : str, default None
If ``'right'``, the first point in the window is excluded from calculations.
If ``'left'``, the last point in the window is excluded from calculations.
If ``'both'``, the no points in the window are excluded from calculations.
If ``'neither'``, the first and last points in the window are excluded
from calculations.
Default ``None`` (``'right'``).
.. versionchanged:: 1.2.0
The closed parameter with fixed windows is now supported.
step : int, default None
..versionadded:: 1.5.0
Evaluate the window at every ``step`` result, equivalent to slicing as
``[::step]``. ``window`` must be an integer. Using a step argument other
than None or 1 will produce a result with a different shape than the input.
method : str {'single', 'table'}, default 'single'
.. versionadded:: 1.3.0
Execute the rolling operation per single column or row (``'single'``)
or over the entire object (``'table'``).
This argument is only implemented when specifying ``engine='numba'``
in the method call.
Returns
-------
``Window`` subclass if a ``win_type`` is passed
``Rolling`` subclass if ``win_type`` is not passed
See Also
--------
expanding : Provides expanding transformations.
ewm : Provides exponential weighted functions.
Notes
-----
See :ref:`Windowing Operations <window.generic>` for further usage details
and examples.
Examples
--------
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0
**window**
Rolling sum with a window length of 2 observations.
>>> df.rolling(2).sum()
B
0 NaN
1 1.0
2 3.0
3 NaN
4 NaN
Rolling sum with a window span of 2 seconds.
>>> df_time = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
... index = [pd.Timestamp('20130101 09:00:00'),
... pd.Timestamp('20130101 09:00:02'),
... pd.Timestamp('20130101 09:00:03'),
... pd.Timestamp('20130101 09:00:05'),
... pd.Timestamp('20130101 09:00:06')])
>>> df_time
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
>>> df_time.rolling('2s').sum()
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
Rolling sum with forward looking windows with 2 observations.
>>> indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=2)
>>> df.rolling(window=indexer, min_periods=1).sum()
B
0 1.0
1 3.0
2 2.0
3 4.0
4 4.0
**min_periods**
Rolling sum with a window length of 2 observations, but only needs a minimum of 1
observation to calculate a value.
>>> df.rolling(2, min_periods=1).sum()
B
0 0.0
1 1.0
2 3.0
3 2.0
4 4.0
**center**
Rolling sum with the result assigned to the center of the window index.
>>> df.rolling(3, min_periods=1, center=True).sum()
B
0 1.0
1 3.0
2 3.0
3 6.0
4 4.0
>>> df.rolling(3, min_periods=1, center=False).sum()
B
0 0.0
1 1.0
2 3.0
3 3.0
4 6.0
**step**
Rolling sum with a window length of 2 observations, minimum of 1 observation to
calculate a value, and a step of 2.
>>> df.rolling(2, min_periods=1, step=2).sum()
B
0 0.0
2 3.0
4 4.0
**win_type**
Rolling sum with a window length of 2, using the Scipy ``'gaussian'``
window type. ``std`` is required in the aggregation function.
>>> df.rolling(2, win_type='gaussian').sum(std=3)
B
0 NaN
1 0.986207
2 2.958621
3 NaN
4 NaN
Round a DataFrame to a variable number of decimal places.
Parameters
----------
decimals : int, dict, Series
Number of decimal places to round each column to. If an int is
given, round each column to the same number of places.
Otherwise dict and Series round to variable numbers of places.
Column names should be in the keys if `decimals` is a
dict-like, or in the index if `decimals` is a Series. Any
columns not included in `decimals` will be left as is. Elements
of `decimals` which are not columns of the input will be
ignored.
*args
Additional keywords have no effect but might be accepted for
compatibility with numpy.
**kwargs
Additional keywords have no effect but might be accepted for
compatibility with numpy.
Returns
-------
DataFrame
A DataFrame with the affected columns rounded to the specified
number of decimal places.
See Also
--------
numpy.around : Round a numpy array to the given number of decimals.
Series.round : Round a Series to the given number of decimals.
Examples
--------
>>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)],
... columns=['dogs', 'cats'])
>>> df
dogs cats
0 0.21 0.32
1 0.01 0.67
2 0.66 0.03
3 0.21 0.18
By providing an integer each column is rounded to the same number
of decimal places
>>> df.round(1)
dogs cats
0 0.2 0.3
1 0.0 0.7
2 0.7 0.0
3 0.2 0.2
With a dict, the number of places for specific columns can be
specified with the column names as key and the number of decimal
places as value
>>> df.round({'dogs': 1, 'cats': 0})
dogs cats
0 0.2 0.0
1 0.0 1.0
2 0.7 0.0
3 0.2 0.0
Using a Series, the number of places for specific columns can be
specified with the column names as index and the number of
decimal places as value
>>> decimals = pd.Series([0, 1], index=['cats', 'dogs'])
>>> df.round(decimals)
dogs cats
0 0.2 0.0
1 0.0 1.0
2 0.7 0.0
3 0.2 0.0
Get Exponential power of dataframe and other, element-wise (binary operator `rpow`).
Equivalent to ``other ** dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `pow`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Get Subtraction of dataframe and other, element-wise (binary operator `rsub`).
Equivalent to ``other - dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `sub`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Get Floating division of dataframe and other, element-wise (binary operator `rtruediv`).
Equivalent to ``other / dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `truediv`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Return a random sample of items from an axis of object.
You can use `random_state` for reproducibility.
Parameters
----------
n : int, optional
Number of items from axis to return. Cannot be used with `frac`.
Default = 1 if `frac` = None.
frac : float, optional
Fraction of axis items to return. Cannot be used with `n`.
replace : bool, default False
Allow or disallow sampling of the same row more than once.
weights : str or ndarray-like, optional
Default 'None' results in equal probability weighting.
If passed a Series, will align with target object on index. Index
values in weights not found in sampled object will be ignored and
index values in sampled object not in weights will be assigned
weights of zero.
If called on a DataFrame, will accept the name of a column
when axis = 0.
Unless weights are a Series, weights must be same length as axis
being sampled.
If weights do not sum to 1, they will be normalized to sum to 1.
Missing values in the weights column will be treated as zero.
Infinite values not allowed.
random_state : int, array-like, BitGenerator, np.random.RandomState, np.random.Generator, optional
If int, array-like, or BitGenerator, seed for random number generator.
If np.random.RandomState or np.random.Generator, use as given.
.. versionchanged:: 1.1.0
array-like and BitGenerator object now passed to np.random.RandomState()
as seed
.. versionchanged:: 1.4.0
np.random.Generator objects now accepted
axis : {0 or ‘index’, 1 or ‘columns’, None}, default None
Axis to sample. Accepts axis number or name. Default is stat axis
for given data type. For `Series` this parameter is unused and defaults to `None`.
ignore_index : bool, default False
If True, the resulting index will be labeled 0, 1, …, n - 1.
.. versionadded:: 1.3.0
Returns
-------
Series or DataFrame
A new object of same type as caller containing `n` items randomly
sampled from the caller object.
See Also
--------
DataFrameGroupBy.sample: Generates random samples from each group of a
DataFrame object.
SeriesGroupBy.sample: Generates random samples from each group of a
Series object.
numpy.random.choice: Generates a random sample from a given 1-D numpy
array.
Notes
-----
If `frac` > 1, `replacement` should be set to `True`.
Examples
--------
>>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0],
... 'num_wings': [2, 0, 0, 0],
... 'num_specimen_seen': [10, 2, 1, 8]},
... index=['falcon', 'dog', 'spider', 'fish'])
>>> df
num_legs num_wings num_specimen_seen
falcon 2 2 10
dog 4 0 2
spider 8 0 1
fish 0 0 8
Extract 3 random elements from the ``Series`` ``df['num_legs']``:
Note that we use `random_state` to ensure the reproducibility of
the examples.
>>> df['num_legs'].sample(n=3, random_state=1)
fish 0
spider 8
falcon 2
Name: num_legs, dtype: int64
A random 50% sample of the ``DataFrame`` with replacement:
>>> df.sample(frac=0.5, replace=True, random_state=1)
num_legs num_wings num_specimen_seen
dog 4 0 2
fish 0 0 8
An upsample sample of the ``DataFrame`` with replacement:
Note that `replace` parameter has to be `True` for `frac` parameter > 1.
>>> df.sample(frac=2, replace=True, random_state=1)
num_legs num_wings num_specimen_seen
dog 4 0 2
fish 0 0 8
falcon 2 2 10
falcon 2 2 10
fish 0 0 8
dog 4 0 2
fish 0 0 8
dog 4 0 2
Using a DataFrame column as weights. Rows with larger value in the
`num_specimen_seen` column are more likely to be sampled.
>>> df.sample(n=2, weights='num_specimen_seen', random_state=1)
num_legs num_wings num_specimen_seen
falcon 2 2 10
fish 0 0 8
Return a subset of the DataFrame's columns based on the column dtypes.
Parameters
----------
include, exclude : scalar or list-like
A selection of dtypes or strings to be included/excluded. At least
one of these parameters must be supplied.
Returns
-------
DataFrame
The subset of the frame including the dtypes in ``include`` and
excluding the dtypes in ``exclude``.
Raises
------
ValueError
* If both of ``include`` and ``exclude`` are empty
* If ``include`` and ``exclude`` have overlapping elements
* If any kind of string dtype is passed in.
See Also
--------
DataFrame.dtypes: Return Series with the data type of each column.
Notes
-----
* To select all *numeric* types, use ``np.number`` or ``'number'``
* To select strings you must use the ``object`` dtype, but note that
this will return *all* object dtype columns
* See the `numpy dtype hierarchy
<https://numpy.org/doc/stable/reference/arrays.scalars.html>`__
* To select datetimes, use ``np.datetime64``, ``'datetime'`` or
``'datetime64'``
* To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
``'timedelta64'``
* To select Pandas categorical dtypes, use ``'category'``
* To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
0.20.0) or ``'datetime64[ns, tz]'``
Examples
--------
>>> df = pd.DataFrame({'a': [1, 2] * 3,
... 'b': [True, False] * 3,
... 'c': [1.0, 2.0] * 3})
>>> df
a b c
0 1 True 1.0
1 2 False 2.0
2 1 True 1.0
3 2 False 2.0
4 1 True 1.0
5 2 False 2.0
>>> df.select_dtypes(include='bool')
b
0 True
1 False
2 True
3 False
4 True
5 False
>>> df.select_dtypes(include=['float64'])
c
0 1.0
1 2.0
2 1.0
3 2.0
4 1.0
5 2.0
>>> df.select_dtypes(exclude=['int64'])
b c
0 True 1.0
1 False 2.0
2 True 1.0
3 False 2.0
4 True 1.0
5 False 2.0
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
Parameters
----------
axis : {index (0), columns (1)}
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
Returns
-------
Series or DataFrame (if level specified)
Assign desired index to given axis.
Indexes for column or row labels can be changed by assigning
a list-like or Index.
Parameters
----------
labels : list-like, Index
The values for the new index.
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to update. The value 0 identifies the rows. For `Series`
this parameter is unused and defaults to 0.
inplace : bool, default False
Whether to return a new DataFrame instance.
.. deprecated:: 1.5.0
copy : bool, default True
Whether to make a copy of the underlying data.
.. versionadded:: 1.5.0
Returns
-------
renamed : DataFrame or None
An object of type DataFrame or None if ``inplace=True``.
See Also
--------
DataFrame.rename_axis : Alter the name of the index or columns.
Examples
--------
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
Change the row labels.
>>> df.set_axis(['a', 'b', 'c'], axis='index')
A B
a 1 4
b 2 5
c 3 6
Change the column labels.
>>> df.set_axis(['I', 'II'], axis='columns')
I II
0 1 4
1 2 5
2 3 6
Now, update the labels without copying the underlying data.
>>> df.set_axis(['i', 'ii'], axis='columns', copy=False)
i ii
0 1 4
1 2 5
2 3 6
Return a new object with updated flags.
Parameters
----------
allows_duplicate_labels : bool, optional
Whether the returned object allows duplicate labels.
Returns
-------
Series or DataFrame
The same type as the caller.
See Also
--------
DataFrame.attrs : Global metadata applying to this dataset.
DataFrame.flags : Global flags applying to this object.
Notes
-----
This method returns a new object that's a view on the same data
as the input. Mutating the input or the output values will be reflected
in the other.
This method is intended to be used in method chains.
"Flags" differ from "metadata". Flags reflect properties of the
pandas object (the Series or DataFrame). Metadata refer to properties
of the dataset, and should be stored in :attr:`DataFrame.attrs`.
Examples
--------
>>> df = pd.DataFrame({"A": [1, 2]})
>>> df.flags.allows_duplicate_labels
True
>>> df2 = df.set_flags(allows_duplicate_labels=False)
>>> df2.flags.allows_duplicate_labels
False
Set the DataFrame index using existing columns.
Set the DataFrame index (row labels) using one or more existing
columns or arrays (of the correct length). The index can replace the
existing index or expand on it.
Parameters
----------
keys : label or array-like or list of labels/arrays
This parameter can be either a single column key, a single array of
the same length as the calling DataFrame, or a list containing an
arbitrary combination of column keys and arrays. Here, "array"
encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and
instances of :class:`~collections.abc.Iterator`.
drop : bool, default True
Delete columns to be used as the new index.
append : bool, default False
Whether to append columns to existing index.
inplace : bool, default False
Whether to modify the DataFrame rather than creating a new one.
verify_integrity : bool, default False
Check the new index for duplicates. Otherwise defer the check until
necessary. Setting to False will improve the performance of this
method.
Returns
-------
DataFrame or None
Changed row labels or None if ``inplace=True``.
See Also
--------
DataFrame.reset_index : Opposite of set_index.
DataFrame.reindex : Change to new indices or expand indices.
DataFrame.reindex_like : Change to same indices as other DataFrame.
Examples
--------
>>> df = pd.DataFrame({'month': [1, 4, 7, 10],
... 'year': [2012, 2014, 2013, 2014],
... 'sale': [55, 40, 84, 31]})
>>> df
month year sale
0 1 2012 55
1 4 2014 40
2 7 2013 84
3 10 2014 31
Set the index to become the 'month' column:
>>> df.set_index('month')
year sale
month
1 2012 55
4 2014 40
7 2013 84
10 2014 31
Create a MultiIndex using columns 'year' and 'month':
>>> df.set_index(['year', 'month'])
sale
year month
2012 1 55
2014 4 40
2013 7 84
2014 10 31
Create a MultiIndex using an Index and a column:
>>> df.set_index([pd.Index([1, 2, 3, 4]), 'year'])
month sale
year
1 2012 1 55
2 2014 4 40
3 2013 7 84
4 2014 10 31
Create a MultiIndex using two Series:
>>> s = pd.Series([1, 2, 3, 4])
>>> df.set_index([s, s**2])
month year sale
1 1 1 2012 55
2 4 4 2014 40
3 9 7 2013 84
4 16 10 2014 31
Built-in immutable sequence. If no argument is given, the constructor returns an empty tuple. If iterable is specified the tuple is initialized from iterable's items. If the argument is a tuple, the return value is the same object.
Shift index by desired number of periods with an optional time `freq`.
When `freq` is not passed, shift the index without realigning the data.
If `freq` is passed (in this case, the index must be date or datetime,
or it will raise a `NotImplementedError`), the index will be
increased using the periods and the `freq`. `freq` can be inferred
when specified as "infer" as long as either freq or inferred_freq
attribute is set in the index.
Parameters
----------
periods : int
Number of periods to shift. Can be positive or negative.
freq : DateOffset, tseries.offsets, timedelta, or str, optional
Offset to use from the tseries module or time rule (e.g. 'EOM').
If `freq` is specified then the index values are shifted but the
data is not realigned. That is, use `freq` if you would like to
extend the index when shifting and preserve the original data.
If `freq` is specified as "infer" then it will be inferred from
the freq or inferred_freq attributes of the index. If neither of
those attributes exist, a ValueError is thrown.
axis : {0 or 'index', 1 or 'columns', None}, default None
Shift direction. For `Series` this parameter is unused and defaults to 0.
fill_value : object, optional
The scalar value to use for newly introduced missing values.
the default depends on the dtype of `self`.
For numeric data, ``np.nan`` is used.
For datetime, timedelta, or period data, etc. :attr:`NaT` is used.
For extension dtypes, ``self.dtype.na_value`` is used.
.. versionchanged:: 1.1.0
Returns
-------
DataFrame
Copy of input object, shifted.
See Also
--------
Index.shift : Shift values of Index.
DatetimeIndex.shift : Shift values of DatetimeIndex.
PeriodIndex.shift : Shift values of PeriodIndex.
tshift : Shift the time index, using the index's frequency if
available.
Examples
--------
>>> df = pd.DataFrame({"Col1": [10, 20, 15, 30, 45],
... "Col2": [13, 23, 18, 33, 48],
... "Col3": [17, 27, 22, 37, 52]},
... index=pd.date_range("2020-01-01", "2020-01-05"))
>>> df
Col1 Col2 Col3
2020-01-01 10 13 17
2020-01-02 20 23 27
2020-01-03 15 18 22
2020-01-04 30 33 37
2020-01-05 45 48 52
>>> df.shift(periods=3)
Col1 Col2 Col3
2020-01-01 NaN NaN NaN
2020-01-02 NaN NaN NaN
2020-01-03 NaN NaN NaN
2020-01-04 10.0 13.0 17.0
2020-01-05 20.0 23.0 27.0
>>> df.shift(periods=1, axis="columns")
Col1 Col2 Col3
2020-01-01 NaN 10 13
2020-01-02 NaN 20 23
2020-01-03 NaN 15 18
2020-01-04 NaN 30 33
2020-01-05 NaN 45 48
>>> df.shift(periods=3, fill_value=0)
Col1 Col2 Col3
2020-01-01 0 0 0
2020-01-02 0 0 0
2020-01-03 0 0 0
2020-01-04 10 13 17
2020-01-05 20 23 27
>>> df.shift(periods=3, freq="D")
Col1 Col2 Col3
2020-01-04 10 13 17
2020-01-05 20 23 27
2020-01-06 15 18 22
2020-01-07 30 33 37
2020-01-08 45 48 52
>>> df.shift(periods=3, freq="infer")
Col1 Col2 Col3
2020-01-04 10 13 17
2020-01-05 20 23 27
2020-01-06 15 18 22
2020-01-07 30 33 37
2020-01-08 45 48 52
Signed integer type, compatible with Python `int` and C ``long``.
:Character code: ``'l'``
:Canonical name: `numpy.int_`
:Alias on this platform (Linux x86_64): `numpy.int64`: 64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``).
:Alias on this platform (Linux x86_64): `numpy.intp`: Signed integer large enough to fit pointer, compatible with C ``intptr_t``.
Return unbiased skew over requested axis.
Normalized by N-1.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
Equivalent to `shift` without copying data.
.. deprecated:: 1.2.0
slice_shift is deprecated,
use DataFrame/Series.shift instead.
The shifted data will not include the dropped periods and the
shifted axis will be smaller than the original.
Parameters
----------
periods : int
Number of periods to move, can be positive or negative.
axis : {0 or 'index', 1 or 'columns', None}, default 0
For `Series` this parameter is unused and defaults to 0.
Returns
-------
shifted : same type as caller
Notes
-----
While the `slice_shift` is faster than `shift`, you may pay for it
later during alignment.
Sort object by labels (along an axis).
Returns a new DataFrame sorted by label if `inplace` argument is
``False``, otherwise updates the original DataFrame and returns None.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis along which to sort. The value 0 identifies the rows,
and 1 identifies the columns.
level : int or level name or list of ints or list of level names
If not None, sort on values in specified index level(s).
ascending : bool or list-like of bools, default True
Sort ascending vs. descending. When the index is a MultiIndex the
sort direction can be controlled for each level individually.
inplace : bool, default False
Whether to modify the DataFrame rather than creating a new one.
kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort'
Choice of sorting algorithm. See also :func:`numpy.sort` for more
information. `mergesort` and `stable` are the only stable algorithms. For
DataFrames, this option is only applied when sorting on a single
column or label.
na_position : {'first', 'last'}, default 'last'
Puts NaNs at the beginning if `first`; `last` puts NaNs at the end.
Not implemented for MultiIndex.
sort_remaining : bool, default True
If True and sorting by level and index is multilevel, sort by other
levels too (in order) after sorting by specified level.
ignore_index : bool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
.. versionadded:: 1.0.0
key : callable, optional
If not None, apply the key function to the index values
before sorting. This is similar to the `key` argument in the
builtin :meth:`sorted` function, with the notable difference that
this `key` function should be *vectorized*. It should expect an
``Index`` and return an ``Index`` of the same shape. For MultiIndex
inputs, the key is applied *per level*.
.. versionadded:: 1.1.0
Returns
-------
DataFrame or None
The original DataFrame sorted by the labels or None if ``inplace=True``.
See Also
--------
Series.sort_index : Sort Series by the index.
DataFrame.sort_values : Sort DataFrame by the value.
Series.sort_values : Sort Series by the value.
Examples
--------
>>> df = pd.DataFrame([1, 2, 3, 4, 5], index=[100, 29, 234, 1, 150],
... columns=['A'])
>>> df.sort_index()
A
1 4
29 2
100 1
150 5
234 3
By default, it sorts in ascending order, to sort in descending order,
use ``ascending=False``
>>> df.sort_index(ascending=False)
A
234 3
150 5
100 1
29 2
1 4
A key function can be specified which is applied to the index before
sorting. For a ``MultiIndex`` this is applied to each level separately.
>>> df = pd.DataFrame({"a": [1, 2, 3, 4]}, index=['A', 'b', 'C', 'd'])
>>> df.sort_index(key=lambda x: x.str.lower())
a
A 1
b 2
C 3
d 4
Sort by the values along either axis.
Parameters
----------
by : str or list of str
Name or list of names to sort by.
- if `axis` is 0 or `'index'` then `by` may contain index
levels and/or column labels.
- if `axis` is 1 or `'columns'` then `by` may contain column
levels and/or index labels.
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis to be sorted.
ascending : bool or list of bool, default True
Sort ascending vs. descending. Specify list for multiple sort
orders. If this is a list of bools, must match the length of
the by.
inplace : bool, default False
If True, perform operation in-place.
kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort'
Choice of sorting algorithm. See also :func:`numpy.sort` for more
information. `mergesort` and `stable` are the only stable algorithms. For
DataFrames, this option is only applied when sorting on a single
column or label.
na_position : {'first', 'last'}, default 'last'
Puts NaNs at the beginning if `first`; `last` puts NaNs at the
end.
ignore_index : bool, default False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
.. versionadded:: 1.0.0
key : callable, optional
Apply the key function to the values
before sorting. This is similar to the `key` argument in the
builtin :meth:`sorted` function, with the notable difference that
this `key` function should be *vectorized*. It should expect a
``Series`` and return a Series with the same shape as the input.
It will be applied to each column in `by` independently.
.. versionadded:: 1.1.0
Returns
-------
DataFrame or None
DataFrame with sorted values or None if ``inplace=True``.
See Also
--------
DataFrame.sort_index : Sort a DataFrame by the index.
Series.sort_values : Similar method for a Series.
Examples
--------
>>> df = pd.DataFrame({
... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'],
... 'col2': [2, 1, 9, 8, 7, 4],
... 'col3': [0, 1, 9, 4, 2, 3],
... 'col4': ['a', 'B', 'c', 'D', 'e', 'F']
... })
>>> df
col1 col2 col3 col4
0 A 2 0 a
1 A 1 1 B
2 B 9 9 c
3 NaN 8 4 D
4 D 7 2 e
5 C 4 3 F
Sort by col1
>>> df.sort_values(by=['col1'])
col1 col2 col3 col4
0 A 2 0 a
1 A 1 1 B
2 B 9 9 c
5 C 4 3 F
4 D 7 2 e
3 NaN 8 4 D
Sort by multiple columns
>>> df.sort_values(by=['col1', 'col2'])
col1 col2 col3 col4
1 A 1 1 B
0 A 2 0 a
2 B 9 9 c
5 C 4 3 F
4 D 7 2 e
3 NaN 8 4 D
Sort Descending
>>> df.sort_values(by='col1', ascending=False)
col1 col2 col3 col4
4 D 7 2 e
5 C 4 3 F
2 B 9 9 c
0 A 2 0 a
1 A 1 1 B
3 NaN 8 4 D
Putting NAs first
>>> df.sort_values(by='col1', ascending=False, na_position='first')
col1 col2 col3 col4
3 NaN 8 4 D
4 D 7 2 e
5 C 4 3 F
2 B 9 9 c
0 A 2 0 a
1 A 1 1 B
Sorting with a key function
>>> df.sort_values(by='col4', key=lambda col: col.str.lower())
col1 col2 col3 col4
0 A 2 0 a
1 A 1 1 B
2 B 9 9 c
3 NaN 8 4 D
4 D 7 2 e
5 C 4 3 F
Natural sort with the key argument,
using the `natsort <https://github.com/SethMMorton/natsort>` package.
>>> df = pd.DataFrame({
... "time": ['0hr', '128hr', '72hr', '48hr', '96hr'],
... "value": [10, 20, 30, 40, 50]
... })
>>> df
time value
0 0hr 10
1 128hr 20
2 72hr 30
3 48hr 40
4 96hr 50
>>> from natsort import index_natsorted
>>> df.sort_values(
... by="time",
... key=lambda x: np.argsort(index_natsorted(df["time"]))
... )
time value
0 0hr 10
3 48hr 40
2 72hr 30
4 96hr 50
1 128hr 20
DataFrame accessor for sparse data.
.. versionadded:: 0.25.0
Squeeze 1 dimensional axis objects into scalars.
Series or DataFrames with a single element are squeezed to a scalar.
DataFrames with a single column or a single row are squeezed to a
Series. Otherwise the object is unchanged.
This method is most useful when you don't know if your
object is a Series or DataFrame, but you do know it has just a single
column. In that case you can safely call `squeeze` to ensure you have a
Series.
Parameters
----------
axis : {0 or 'index', 1 or 'columns', None}, default None
A specific axis to squeeze. By default, all length-1 axes are
squeezed. For `Series` this parameter is unused and defaults to `None`.
Returns
-------
DataFrame, Series, or scalar
The projection after squeezing `axis` or all the axes.
See Also
--------
Series.iloc : Integer-location based indexing for selecting scalars.
DataFrame.iloc : Integer-location based indexing for selecting Series.
Series.to_frame : Inverse of DataFrame.squeeze for a
single-column DataFrame.
Examples
--------
>>> primes = pd.Series([2, 3, 5, 7])
Slicing might produce a Series with a single value:
>>> even_primes = primes[primes % 2 == 0]
>>> even_primes
0 2
dtype: int64
>>> even_primes.squeeze()
2
Squeezing objects with more than one value in every axis does nothing:
>>> odd_primes = primes[primes % 2 == 1]
>>> odd_primes
1 3
2 5
3 7
dtype: int64
>>> odd_primes.squeeze()
1 3
2 5
3 7
dtype: int64
Squeezing is even more effective when used with DataFrames.
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])
>>> df
a b
0 1 2
1 3 4
Slicing a single column will produce a DataFrame with the columns
having only one value:
>>> df_a = df[['a']]
>>> df_a
a
0 1
1 3
So the columns can be squeezed down, resulting in a Series:
>>> df_a.squeeze('columns')
0 1
1 3
Name: a, dtype: int64
Slicing a single row from a single column will produce a single
scalar DataFrame:
>>> df_0a = df.loc[df.index < 1, ['a']]
>>> df_0a
a
0 1
Squeezing the rows produces a single scalar Series:
>>> df_0a.squeeze('rows')
a 1
Name: 0, dtype: int64
Squeezing all axes will project directly into a scalar:
>>> df_0a.squeeze()
1
Stack the prescribed level(s) from columns to index.
Return a reshaped DataFrame or Series having a multi-level
index with one or more new inner-most levels compared to the current
DataFrame. The new inner-most levels are created by pivoting the
columns of the current dataframe:
- if the columns have a single level, the output is a Series;
- if the columns have multiple levels, the new index
level(s) is (are) taken from the prescribed level(s) and
the output is a DataFrame.
Parameters
----------
level : int, str, list, default -1
Level(s) to stack from the column axis onto the index
axis, defined as one index or label, or a list of indices
or labels.
dropna : bool, default True
Whether to drop rows in the resulting Frame/Series with
missing values. Stacking a column level onto the index
axis can create combinations of index and column values
that are missing from the original dataframe. See Examples
section.
Returns
-------
DataFrame or Series
Stacked dataframe or series.
See Also
--------
DataFrame.unstack : Unstack prescribed level(s) from index axis
onto column axis.
DataFrame.pivot : Reshape dataframe from long format to wide
format.
DataFrame.pivot_table : Create a spreadsheet-style pivot table
as a DataFrame.
Notes
-----
The function is named by analogy with a collection of books
being reorganized from being side by side on a horizontal
position (the columns of the dataframe) to being stacked
vertically on top of each other (in the index of the
dataframe).
Reference :ref:`the user guide <reshaping.stacking>` for more examples.
Examples
--------
**Single level columns**
>>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]],
... index=['cat', 'dog'],
... columns=['weight', 'height'])
Stacking a dataframe with a single level column axis returns a Series:
>>> df_single_level_cols
weight height
cat 0 1
dog 2 3
>>> df_single_level_cols.stack()
cat weight 0
height 1
dog weight 2
height 3
dtype: int64
**Multi level columns: simple case**
>>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'),
... ('weight', 'pounds')])
>>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]],
... index=['cat', 'dog'],
... columns=multicol1)
Stacking a dataframe with a multi-level column axis:
>>> df_multi_level_cols1
weight
kg pounds
cat 1 2
dog 2 4
>>> df_multi_level_cols1.stack()
weight
cat kg 1
pounds 2
dog kg 2
pounds 4
**Missing values**
>>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'),
... ('height', 'm')])
>>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]],
... index=['cat', 'dog'],
... columns=multicol2)
It is common to have missing values when stacking a dataframe
with multi-level columns, as the stacked dataframe typically
has more values than the original dataframe. Missing values
are filled with NaNs:
>>> df_multi_level_cols2
weight height
kg m
cat 1.0 2.0
dog 3.0 4.0
>>> df_multi_level_cols2.stack()
height weight
cat kg NaN 1.0
m 2.0 NaN
dog kg NaN 3.0
m 4.0 NaN
**Prescribing the level(s) to be stacked**
The first parameter controls which level or levels are stacked:
>>> df_multi_level_cols2.stack(0)
kg m
cat height NaN 2.0
weight 1.0 NaN
dog height NaN 4.0
weight 3.0 NaN
>>> df_multi_level_cols2.stack([0, 1])
cat height m 2.0
weight kg 1.0
dog height m 4.0
weight kg 3.0
dtype: float64
**Dropping missing values**
>>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]],
... index=['cat', 'dog'],
... columns=multicol2)
Note that rows where all values are missing are dropped by
default but this behaviour can be controlled via the dropna
keyword parameter:
>>> df_multi_level_cols3
weight height
kg m
cat NaN 1.0
dog 2.0 3.0
>>> df_multi_level_cols3.stack(dropna=False)
height weight
cat kg NaN NaN
m 1.0 NaN
dog kg NaN 2.0
m 3.0 NaN
>>> df_multi_level_cols3.stack(dropna=True)
height weight
cat m 1.0 NaN
dog kg NaN 2.0
m 3.0 NaN
Return sample standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument.
Parameters
----------
axis : {index (0), columns (1)}
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
Returns
-------
Series or DataFrame (if level specified)
Notes
-----
To have the same behaviour as `numpy.std`, use `ddof=0` (instead of the
default `ddof=1`)
Examples
--------
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3],
... 'age': [21, 25, 62, 43],
... 'height': [1.61, 1.87, 1.49, 2.01]}
... ).set_index('person_id')
>>> df
age height
person_id
0 21 1.61
1 25 1.87
2 62 1.49
3 43 2.01
The standard deviation of the columns can be found as follows:
>>> df.std()
age 18.786076
height 0.237417
Alternatively, `ddof=0` can be set to normalize by N instead of N-1:
>>> df.std(ddof=0)
age 16.269219
height 0.205609
Helps style a DataFrame or Series according to the data with HTML and CSS.
Parameters
----------
data : Series or DataFrame
Data to be styled - either a Series or DataFrame.
precision : int, optional
Precision to round floats to. If not given defaults to
``pandas.options.styler.format.precision``.
.. versionchanged:: 1.4.0
table_styles : list-like, default None
List of {selector: (attr, value)} dicts; see Notes.
uuid : str, default None
A unique identifier to avoid CSS collisions; generated automatically.
caption : str, tuple, default None
String caption to attach to the table. Tuple only used for LaTeX dual captions.
table_attributes : str, default None
Items that show up in the opening ``<table>`` tag
in addition to automatic (by default) id.
cell_ids : bool, default True
If True, each cell will have an ``id`` attribute in their HTML tag.
The ``id`` takes the form ``T_<uuid>_row<num_row>_col<num_col>``
where ``<uuid>`` is the unique identifier, ``<num_row>`` is the row
number and ``<num_col>`` is the column number.
na_rep : str, optional
Representation for missing values.
If ``na_rep`` is None, no special formatting is applied, and falls back to
``pandas.options.styler.format.na_rep``.
.. versionadded:: 1.0.0
uuid_len : int, default 5
If ``uuid`` is not specified, the length of the ``uuid`` to randomly generate
expressed in hex characters, in range [0, 32].
.. versionadded:: 1.2.0
decimal : str, optional
Character used as decimal separator for floats, complex and integers. If not
given uses ``pandas.options.styler.format.decimal``.
.. versionadded:: 1.3.0
thousands : str, optional, default None
Character used as thousands separator for floats, complex and integers. If not
given uses ``pandas.options.styler.format.thousands``.
.. versionadded:: 1.3.0
escape : str, optional
Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"``
in cell display string with HTML-safe sequences.
Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``,
``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with
LaTeX-safe sequences. If not given uses ``pandas.options.styler.format.escape``.
.. versionadded:: 1.3.0
formatter : str, callable, dict, optional
Object to define how values are displayed. See ``Styler.format``. If not given
uses ``pandas.options.styler.format.formatter``.
.. versionadded:: 1.4.0
Attributes
----------
env : Jinja2 jinja2.Environment
template_html : Jinja2 Template
template_html_table : Jinja2 Template
template_html_style : Jinja2 Template
template_latex : Jinja2 Template
loader : Jinja2 Loader
See Also
--------
DataFrame.style : Return a Styler object containing methods for building
a styled HTML representation for the DataFrame.
Notes
-----
Most styling will be done by passing style functions into
``Styler.apply`` or ``Styler.applymap``. Style functions should
return values with strings containing CSS ``'attr: value'`` that will
be applied to the indicated cells.
If using in the Jupyter notebook, Styler has defined a ``_repr_html_``
to automatically render itself. Otherwise call Styler.to_html to get
the generated HTML.
CSS classes are attached to the generated HTML
* Index and Column names include ``index_name`` and ``level<k>``
where `k` is its level in a MultiIndex
* Index label cells include
* ``row_heading``
* ``row<n>`` where `n` is the numeric position of the row
* ``level<k>`` where `k` is the level in a MultiIndex
* Column label cells include
* ``col_heading``
* ``col<n>`` where `n` is the numeric position of the column
* ``level<k>`` where `k` is the level in a MultiIndex
* Blank cells include ``blank``
* Data cells include ``data``
* Trimmed cells include ``col_trim`` or ``row_trim``.
Any, or all, or these classes can be renamed by using the ``css_class_names``
argument in ``Styler.set_table_classes``, giving a value such as
*{"row": "MY_ROW_CLASS", "col_trim": "", "row_trim": ""}*.
Get Subtraction of dataframe and other, element-wise (binary operator `sub`).
Equivalent to ``dataframe - other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rsub`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Get Subtraction of dataframe and other, element-wise (binary operator `sub`).
Equivalent to ``dataframe - other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rsub`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Return the sum of the values over the requested axis.
This is equivalent to the method ``numpy.sum``.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
min_count : int, default 0
The required number of valid values to perform the operation. If fewer than
``min_count`` non-NA values are present the result will be NA.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or DataFrame (if level specified)
See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.
Examples
--------
>>> idx = pd.MultiIndex.from_arrays([
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded animal
warm dog 4
falcon 2
cold fish 0
spider 8
Name: legs, dtype: int64
>>> s.sum()
14
By default, the sum of an empty or all-NA Series is ``0``.
>>> pd.Series([], dtype="float64").sum() # min_count=0 is the default
0.0
This can be controlled with the ``min_count`` parameter. For example, if
you'd like the sum of an empty series to be NaN, pass ``min_count=1``.
>>> pd.Series([], dtype="float64").sum(min_count=1)
nan
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
empty series identically.
>>> pd.Series([np.nan]).sum()
0.0
>>> pd.Series([np.nan]).sum(min_count=1)
nan
Interchange axes and swap values axes appropriately.
Returns
-------
y : same as input
Swap levels i and j in a :class:`MultiIndex`.
Default is to swap the two innermost levels of the index.
Parameters
----------
i, j : int or str
Levels of the indices to be swapped. Can pass level name as string.
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to swap levels on. 0 or 'index' for row-wise, 1 or
'columns' for column-wise.
Returns
-------
DataFrame
DataFrame with levels swapped in MultiIndex.
Examples
--------
>>> df = pd.DataFrame(
... {"Grade": ["A", "B", "A", "C"]},
... index=[
... ["Final exam", "Final exam", "Coursework", "Coursework"],
... ["History", "Geography", "History", "Geography"],
... ["January", "February", "March", "April"],
... ],
... )
>>> df
Grade
Final exam History January A
Geography February B
Coursework History March A
Geography April C
In the following example, we will swap the levels of the indices.
Here, we will swap the levels column-wise, but levels can be swapped row-wise
in a similar manner. Note that column-wise is the default behaviour.
By not supplying any arguments for i and j, we swap the last and second to
last indices.
>>> df.swaplevel()
Grade
Final exam January History A
February Geography B
Coursework March History A
April Geography C
By supplying one argument, we can choose which index to swap the last
index with. We can for example swap the first index with the last one as
follows.
>>> df.swaplevel(0)
Grade
January History Final exam A
February Geography Final exam B
March History Coursework A
April Geography Coursework C
We can also define explicitly which indices we want to swap by supplying values
for both i and j. Here, we for example swap the first and second indices.
>>> df.swaplevel(0, 1)
Grade
History Final exam January A
Geography Final exam February B
History Coursework March A
Geography Coursework April C
Return the last `n` rows.
This function returns last `n` rows from the object based on
position. It is useful for quickly verifying data, for example,
after sorting or appending rows.
For negative values of `n`, this function returns all rows except
the first `|n|` rows, equivalent to ``df[|n|:]``.
If n is larger than the number of rows, this function returns all rows.
Parameters
----------
n : int, default 5
Number of rows to select.
Returns
-------
type of caller
The last `n` rows of the caller object.
See Also
--------
DataFrame.head : The first `n` rows of the caller object.
Examples
--------
>>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion',
... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df
animal
0 alligator
1 bee
2 falcon
3 lion
4 monkey
5 parrot
6 shark
7 whale
8 zebra
Viewing the last 5 lines
>>> df.tail()
animal
4 monkey
5 parrot
6 shark
7 whale
8 zebra
Viewing the last `n` lines (three in this case)
>>> df.tail(3)
animal
6 shark
7 whale
8 zebra
For negative values of `n`
>>> df.tail(-3)
animal
3 lion
4 monkey
5 parrot
6 shark
7 whale
8 zebra
Return the elements in the given *positional* indices along an axis.
This means that we are not indexing according to actual values in
the index attribute of the object. We are indexing according to the
actual position of the element in the object.
Parameters
----------
indices : array-like
An array of ints indicating which positions to take.
axis : {0 or 'index', 1 or 'columns', None}, default 0
The axis on which to select elements. ``0`` means that we are
selecting rows, ``1`` means that we are selecting columns.
For `Series` this parameter is unused and defaults to 0.
is_copy : bool
Before pandas 1.0, ``is_copy=False`` can be specified to ensure
that the return value is an actual copy. Starting with pandas 1.0,
``take`` always returns a copy, and the keyword is therefore
deprecated.
.. deprecated:: 1.0.0
**kwargs
For compatibility with :meth:`numpy.take`. Has no effect on the
output.
Returns
-------
taken : same type as caller
An array-like containing the elements taken from the object.
See Also
--------
DataFrame.loc : Select a subset of a DataFrame by labels.
DataFrame.iloc : Select a subset of a DataFrame by positions.
numpy.take : Take elements from an array along an axis.
Examples
--------
>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=['name', 'class', 'max_speed'],
... index=[0, 2, 3, 1])
>>> df
name class max_speed
0 falcon bird 389.0
2 parrot bird 24.0
3 lion mammal 80.5
1 monkey mammal NaN
Take elements at positions 0 and 3 along the axis 0 (default).
Note how the actual indices selected (0 and 1) do not correspond to
our selected indices 0 and 3. That's because we are selecting the 0th
and 3rd rows, not rows whose indices equal 0 and 3.
>>> df.take([0, 3])
name class max_speed
0 falcon bird 389.0
1 monkey mammal NaN
Take elements at indices 1 and 2 along the axis 1 (column selection).
>>> df.take([1, 2], axis=1)
class max_speed
0 bird 389.0
2 bird 24.0
3 mammal 80.5
1 mammal NaN
We may take elements using negative integers for positive indices,
starting from the end of the object, just like with Python lists.
>>> df.take([-1, -2])
name class max_speed
1 monkey mammal NaN
3 lion mammal 80.5
Copy object to the system clipboard.
Write a text representation of object to the system clipboard.
This can be pasted into Excel, for example.
Parameters
----------
excel : bool, default True
Produce output in a csv format for easy pasting into excel.
- True, use the provided separator for csv pasting.
- False, write a string representation of the object to the clipboard.
sep : str, default ``'\t'``
Field delimiter.
**kwargs
These parameters will be passed to DataFrame.to_csv.
See Also
--------
DataFrame.to_csv : Write a DataFrame to a comma-separated values
(csv) file.
read_clipboard : Read text from clipboard and pass to read_csv.
Notes
-----
Requirements for your platform.
- Linux : `xclip`, or `xsel` (with `PyQt4` modules)
- Windows : none
- macOS : none
This method uses the processes developed for the package `pyperclip`. A
solution to render any output string format is given in the examples.
Examples
--------
Copy the contents of a DataFrame to the clipboard.
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
>>> df.to_clipboard(sep=',') # doctest: +SKIP
... # Wrote the following to the system clipboard:
... # ,A,B,C
... # 0,1,2,3
... # 1,4,5,6
We can omit the index by passing the keyword `index` and setting
it to false.
>>> df.to_clipboard(sep=',', index=False) # doctest: +SKIP
... # Wrote the following to the system clipboard:
... # A,B,C
... # 1,2,3
... # 4,5,6
Using the original `pyperclip` package for any string output format.
.. code-block:: python
import pyperclip
html = df.style.to_html()
pyperclip.copy(html)
Write object to a comma-separated values (csv) file.
Parameters
----------
path_or_buf : str, path object, file-like object, or None, default None
String, path object (implementing os.PathLike[str]), or file-like
object implementing a write() function. If None, the result is
returned as a string. If a non-binary file object is passed, it should
be opened with `newline=''`, disabling universal newlines. If a binary
file object is passed, `mode` might need to contain a `'b'`.
.. versionchanged:: 1.2.0
Support for binary file objects was introduced.
sep : str, default ','
String of length 1. Field delimiter for the output file.
na_rep : str, default ''
Missing data representation.
float_format : str, Callable, default None
Format string for floating point numbers. If a Callable is given, it takes
precedence over other numeric formatting parameters, like decimal.
columns : sequence, optional
Columns to write.
header : bool or list of str, default True
Write out the column names. If a list of strings is given it is
assumed to be aliases for the column names.
index : bool, default True
Write row names (index).
index_label : str or sequence, or False, default None
Column label for index column(s) if desired. If None is given, and
`header` and `index` are True, then the index names are used. A
sequence should be given if the object uses MultiIndex. If
False do not print fields for index names. Use index_label=False
for easier importing in R.
mode : str, default 'w'
Python write mode. The available write modes are the same as
:py:func:`open`.
encoding : str, optional
A string representing the encoding to use in the output file,
defaults to 'utf-8'. `encoding` is not supported if `path_or_buf`
is a non-binary file object.
compression : str or dict, default 'infer'
For on-the-fly compression of the output data. If 'infer' and 'path_or_buf' is
path-like, then detect compression from the following extensions: '.gz',
'.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
(otherwise no compression).
Set to ``None`` for no compression.
Can also be a dict with key ``'method'`` set
to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
key-value pairs are forwarded to
``zipfile.ZipFile``, ``gzip.GzipFile``,
``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
``tarfile.TarFile``, respectively.
As an example, the following could be passed for faster compression and to create
a reproducible gzip archive:
``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.
.. versionadded:: 1.5.0
Added support for `.tar` files.
.. versionchanged:: 1.0.0
May now be a dict with key 'method' as compression mode
and other entries as additional compression options if
compression mode is 'zip'.
.. versionchanged:: 1.1.0
Passing compression options as keys in dict is
supported for compression modes 'gzip', 'bz2', 'zstd', and 'zip'.
.. versionchanged:: 1.2.0
Compression is supported for binary file objects.
.. versionchanged:: 1.2.0
Previous versions forwarded dict entries for 'gzip' to
`gzip.open` instead of `gzip.GzipFile` which prevented
setting `mtime`.
quoting : optional constant from csv module
Defaults to csv.QUOTE_MINIMAL. If you have set a `float_format`
then floats are converted to strings and thus csv.QUOTE_NONNUMERIC
will treat them as non-numeric.
quotechar : str, default '\"'
String of length 1. Character used to quote fields.
lineterminator : str, optional
The newline character or character sequence to use in the output
file. Defaults to `os.linesep`, which depends on the OS in which
this method is called ('\\n' for linux, '\\r\\n' for Windows, i.e.).
.. versionchanged:: 1.5.0
Previously was line_terminator, changed for consistency with
read_csv and the standard library 'csv' module.
chunksize : int or None
Rows to write at a time.
date_format : str, default None
Format string for datetime objects.
doublequote : bool, default True
Control quoting of `quotechar` inside a field.
escapechar : str, default None
String of length 1. Character used to escape `sep` and `quotechar`
when appropriate.
decimal : str, default '.'
Character recognized as decimal separator. E.g. use ',' for
European data.
errors : str, default 'strict'
Specifies how encoding and decoding errors are to be handled.
See the errors argument for :func:`open` for a full list
of options.
.. versionadded:: 1.1.0
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2.0
Returns
-------
None or str
If path_or_buf is None, returns the resulting csv format as a
string. Otherwise returns None.
See Also
--------
read_csv : Load a CSV file into a DataFrame.
to_excel : Write DataFrame to an Excel file.
Examples
--------
>>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'],
... 'mask': ['red', 'purple'],
... 'weapon': ['sai', 'bo staff']})
>>> df.to_csv(index=False)
'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n'
Create 'out.zip' containing 'out.csv'
>>> compression_opts = dict(method='zip',
... archive_name='out.csv') # doctest: +SKIP
>>> df.to_csv('out.zip', index=False,
... compression=compression_opts) # doctest: +SKIP
To write a csv file to a new folder or nested folder you will first
need to create it using either Pathlib or os:
>>> from pathlib import Path # doctest: +SKIP
>>> filepath = Path('folder/subfolder/out.csv') # doctest: +SKIP
>>> filepath.parent.mkdir(parents=True, exist_ok=True) # doctest: +SKIP
>>> df.to_csv(filepath) # doctest: +SKIP
>>> import os # doctest: +SKIP
>>> os.makedirs('folder/subfolder', exist_ok=True) # doctest: +SKIP
>>> df.to_csv('folder/subfolder/out.csv') # doctest: +SKIP
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters
(see below).
Parameters
----------
orient : str {'dict', 'list', 'series', 'split', 'tight', 'records', 'index'}
Determines the type of the values of the dictionary.
- 'dict' (default) : dict like {column -> {index -> value}}
- 'list' : dict like {column -> [values]}
- 'series' : dict like {column -> Series(values)}
- 'split' : dict like
{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
- 'tight' : dict like
{'index' -> [index], 'columns' -> [columns], 'data' -> [values],
'index_names' -> [index.names], 'column_names' -> [column.names]}
- 'records' : list like
[{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
Abbreviations are allowed. `s` indicates `series` and `sp`
indicates `split`.
.. versionadded:: 1.4.0
'tight' as an allowed value for the ``orient`` argument
into : class, default dict
The collections.abc.Mapping subclass used for all Mappings
in the return value. Can be the actual class or an empty
instance of the mapping type you want. If you want a
collections.defaultdict, you must pass it initialized.
Returns
-------
dict, list or collections.abc.Mapping
Return a collections.abc.Mapping object representing the DataFrame.
The resulting transformation depends on the `orient` parameter.
See Also
--------
DataFrame.from_dict: Create a DataFrame from a dictionary.
DataFrame.to_json: Convert a DataFrame to JSON format.
Examples
--------
>>> df = pd.DataFrame({'col1': [1, 2],
... 'col2': [0.5, 0.75]},
... index=['row1', 'row2'])
>>> df
col1 col2
row1 1 0.50
row2 2 0.75
>>> df.to_dict()
{'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
>>> df.to_dict('series')
{'col1': row1 1
row2 2
Name: col1, dtype: int64,
'col2': row1 0.50
row2 0.75
Name: col2, dtype: float64}
>>> df.to_dict('split')
{'index': ['row1', 'row2'], 'columns': ['col1', 'col2'],
'data': [[1, 0.5], [2, 0.75]]}
>>> df.to_dict('records')
[{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
>>> df.to_dict('index')
{'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
>>> df.to_dict('tight')
{'index': ['row1', 'row2'], 'columns': ['col1', 'col2'],
'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]}
You can also specify the mapping type.
>>> from collections import OrderedDict, defaultdict
>>> df.to_dict(into=OrderedDict)
OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])),
('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want a `defaultdict`, you need to initialize it:
>>> dd = defaultdict(list)
>>> df.to_dict('records', into=dd)
[defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}),
defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
Write object to an Excel sheet.
To write a single object to an Excel .xlsx file it is only necessary to
specify a target file name. To write to multiple sheets it is necessary to
create an `ExcelWriter` object with a target file name, and specify a sheet
in the file to write to.
Multiple sheets may be written to by specifying unique `sheet_name`.
With all data written to the file it is necessary to save the changes.
Note that creating an `ExcelWriter` object with a file name that already
exists will result in the contents of the existing file being erased.
Parameters
----------
excel_writer : path-like, file-like, or ExcelWriter object
File path or existing ExcelWriter.
sheet_name : str, default 'Sheet1'
Name of sheet which will contain DataFrame.
na_rep : str, default ''
Missing data representation.
float_format : str, optional
Format string for floating point numbers. For example
``float_format="%.2f"`` will format 0.1234 to 0.12.
columns : sequence or list of str, optional
Columns to write.
header : bool or list of str, default True
Write out the column names. If a list of string is given it is
assumed to be aliases for the column names.
index : bool, default True
Write row names (index).
index_label : str or sequence, optional
Column label for index column(s) if desired. If not specified, and
`header` and `index` are True, then the index names are used. A
sequence should be given if the DataFrame uses MultiIndex.
startrow : int, default 0
Upper left cell row to dump data frame.
startcol : int, default 0
Upper left cell column to dump data frame.
engine : str, optional
Write engine to use, 'openpyxl' or 'xlsxwriter'. You can also set this
via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and
``io.excel.xlsm.writer``.
.. deprecated:: 1.2.0
As the `xlwt <https://pypi.org/project/xlwt/>`__ package is no longer
maintained, the ``xlwt`` engine will be removed in a future version
of pandas.
merge_cells : bool, default True
Write MultiIndex and Hierarchical Rows as merged cells.
encoding : str, optional
Encoding of the resulting excel file. Only necessary for xlwt,
other writers support unicode natively.
.. deprecated:: 1.5.0
This keyword was not used.
inf_rep : str, default 'inf'
Representation for infinity (there is no native representation for
infinity in Excel).
verbose : bool, default True
Display more information in the error logs.
.. deprecated:: 1.5.0
This keyword was not used.
freeze_panes : tuple of int (length 2), optional
Specifies the one-based bottommost row and rightmost column that
is to be frozen.
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2.0
See Also
--------
to_csv : Write DataFrame to a comma-separated values (csv) file.
ExcelWriter : Class for writing DataFrame objects into excel sheets.
read_excel : Read an Excel file into a pandas DataFrame.
read_csv : Read a comma-separated values (csv) file into DataFrame.
io.formats.style.Styler.to_excel : Add styles to Excel sheet.
Notes
-----
For compatibility with :meth:`~DataFrame.to_csv`,
to_excel serializes lists and dicts to strings before writing.
Once a workbook has been saved it is not possible to write further
data without rewriting the whole workbook.
Examples
--------
Create, write to and save a workbook:
>>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']],
... index=['row 1', 'row 2'],
... columns=['col 1', 'col 2'])
>>> df1.to_excel("output.xlsx") # doctest: +SKIP
To specify the sheet name:
>>> df1.to_excel("output.xlsx",
... sheet_name='Sheet_name_1') # doctest: +SKIP
If you wish to write to more than one sheet in the workbook, it is
necessary to specify an ExcelWriter object:
>>> df2 = df1.copy()
>>> with pd.ExcelWriter('output.xlsx') as writer: # doctest: +SKIP
... df1.to_excel(writer, sheet_name='Sheet_name_1')
... df2.to_excel(writer, sheet_name='Sheet_name_2')
ExcelWriter can also be used to append to an existing Excel file:
>>> with pd.ExcelWriter('output.xlsx',
... mode='a') as writer: # doctest: +SKIP
... df.to_excel(writer, sheet_name='Sheet_name_3')
To set the library that is used to write the Excel file,
you can pass the `engine` keyword (the default engine is
automatically chosen depending on the file extension):
>>> df1.to_excel('output1.xlsx', engine='xlsxwriter') # doctest: +SKIP
Write a DataFrame to the binary Feather format.
Parameters
----------
path : str, path object, file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``write()`` function. If a string or a path,
it will be used as Root Directory path when writing a partitioned dataset.
**kwargs :
Additional keywords passed to :func:`pyarrow.feather.write_feather`.
Starting with pyarrow 0.17, this includes the `compression`,
`compression_level`, `chunksize` and `version` keywords.
.. versionadded:: 1.1.0
Notes
-----
This function writes the dataframe as a `feather file
<https://arrow.apache.org/docs/python/feather.html>`_. Requires a default
index. For saving the DataFrame with your custom index use a method that
supports custom indices e.g. `to_parquet`.
Write a DataFrame to a Google BigQuery table.
This function requires the `pandas-gbq package
<https://pandas-gbq.readthedocs.io>`__.
See the `How to authenticate with Google BigQuery
<https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__
guide for authentication instructions.
Parameters
----------
destination_table : str
Name of table to be written, in the form ``dataset.tablename``.
project_id : str, optional
Google BigQuery Account project ID. Optional when available from
the environment.
chunksize : int, optional
Number of rows to be inserted in each chunk from the dataframe.
Set to ``None`` to load the whole dataframe at once.
reauth : bool, default False
Force Google BigQuery to re-authenticate the user. This is useful
if multiple accounts are used.
if_exists : str, default 'fail'
Behavior when the destination table exists. Value can be one of:
``'fail'``
If table exists raise pandas_gbq.gbq.TableCreationError.
``'replace'``
If table exists, drop it, recreate it, and insert data.
``'append'``
If table exists, insert data. Create if does not exist.
auth_local_webserver : bool, default True
Use the `local webserver flow`_ instead of the `console flow`_
when getting user credentials.
.. _local webserver flow:
https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
.. _console flow:
https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
*New in version 0.2.0 of pandas-gbq*.
.. versionchanged:: 1.5.0
Default value is changed to ``True``. Google has deprecated the
``auth_local_webserver = False`` `"out of band" (copy-paste)
flow
<https://developers.googleblog.com/2022/02/making-oauth-flows-safer.html?m=1#disallowed-oob>`_.
table_schema : list of dicts, optional
List of BigQuery table fields to which according DataFrame
columns conform to, e.g. ``[{'name': 'col1', 'type':
'STRING'},...]``. If schema is not provided, it will be
generated according to dtypes of DataFrame columns. See
BigQuery API documentation on available names of a field.
*New in version 0.3.1 of pandas-gbq*.
location : str, optional
Location where the load job should run. See the `BigQuery locations
documentation
<https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
list of available locations. The location must match that of the
target dataset.
*New in version 0.5.0 of pandas-gbq*.
progress_bar : bool, default True
Use the library `tqdm` to show the progress bar for the upload,
chunk by chunk.
*New in version 0.5.0 of pandas-gbq*.
credentials : google.auth.credentials.Credentials, optional
Credentials for accessing Google APIs. Use this parameter to
override default credentials, such as to use Compute Engine
:class:`google.auth.compute_engine.Credentials` or Service
Account :class:`google.oauth2.service_account.Credentials`
directly.
*New in version 0.8.0 of pandas-gbq*.
See Also
--------
pandas_gbq.to_gbq : This function in the pandas-gbq library.
read_gbq : Read a DataFrame from Google BigQuery.
Write the contained data to an HDF5 file using HDFStore.
Hierarchical Data Format (HDF) is self-describing, allowing an
application to interpret the structure and contents of a file with
no outside information. One HDF file can hold a mix of related objects
which can be accessed as a group or as individual objects.
In order to add another DataFrame or Series to an existing HDF file
please use append mode and a different a key.
.. warning::
One can store a subclass of ``DataFrame`` or ``Series`` to HDF5,
but the type of the subclass is lost upon storing.
For more information see the :ref:`user guide <io.hdf5>`.
Parameters
----------
path_or_buf : str or pandas.HDFStore
File path or HDFStore object.
key : str
Identifier for the group in the store.
mode : {'a', 'w', 'r+'}, default 'a'
Mode to open file:
- 'w': write, a new file is created (an existing file with
the same name would be deleted).
- 'a': append, an existing file is opened for reading and
writing, and if the file does not exist it is created.
- 'r+': similar to 'a', but the file must already exist.
complevel : {0-9}, default None
Specifies a compression level for data.
A value of 0 or None disables compression.
complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib'
Specifies the compression library to be used.
As of v0.20.2 these additional compressors for Blosc are supported
(default if no compressor specified: 'blosc:blosclz'):
{'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy',
'blosc:zlib', 'blosc:zstd'}.
Specifying a compression library which is not available issues
a ValueError.
append : bool, default False
For Table formats, append the input data to the existing.
format : {'fixed', 'table', None}, default 'fixed'
Possible values:
- 'fixed': Fixed format. Fast writing/reading. Not-appendable,
nor searchable.
- 'table': Table format. Write as a PyTables Table structure
which may perform worse but allow more flexible operations
like searching / selecting subsets of the data.
- If None, pd.get_option('io.hdf.default_format') is checked,
followed by fallback to "fixed".
index : bool, default True
Write DataFrame index as a column.
min_itemsize : dict or int, optional
Map column names to minimum string sizes for columns.
nan_rep : Any, optional
How to represent null values as str.
Not allowed with append=True.
dropna : bool, default False, optional
Remove missing values.
data_columns : list of columns or True, optional
List of columns to create as indexed data columns for on-disk
queries, or True to use all columns. By default only the axes
of the object are indexed. See
:ref:`Query via data columns<io.hdf5-query-data-columns>`. for
more information.
Applicable only to format='table'.
errors : str, default 'strict'
Specifies how encoding and decoding errors are to be handled.
See the errors argument for :func:`open` for a full list
of options.
encoding : str, default "UTF-8"
See Also
--------
read_hdf : Read from HDF file.
DataFrame.to_orc : Write a DataFrame to the binary orc format.
DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
DataFrame.to_sql : Write to a SQL table.
DataFrame.to_feather : Write out feather-format for DataFrames.
DataFrame.to_csv : Write out to a csv file.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]},
... index=['a', 'b', 'c']) # doctest: +SKIP
>>> df.to_hdf('data.h5', key='df', mode='w') # doctest: +SKIP
We can add another object to the same file:
>>> s = pd.Series([1, 2, 3, 4]) # doctest: +SKIP
>>> s.to_hdf('data.h5', key='s') # doctest: +SKIP
Reading from HDF file:
>>> pd.read_hdf('data.h5', 'df') # doctest: +SKIP
A B
a 1 4
b 2 5
c 3 6
>>> pd.read_hdf('data.h5', 's') # doctest: +SKIP
0 1
1 2
2 3
3 4
dtype: int64
Render a DataFrame as an HTML table.
Parameters
----------
buf : str, Path or StringIO-like, optional, default None
Buffer to write to. If None, the output is returned as a string.
columns : sequence, optional, default None
The subset of columns to write. Writes all columns by default.
col_space : str or int, list or dict of int or str, optional
The minimum width of each column in CSS length units. An int is assumed to be px units.
.. versionadded:: 0.25.0
Ability to use str.
header : bool, optional
Whether to print column labels, default True.
index : bool, optional, default True
Whether to print index (row) labels.
na_rep : str, optional, default 'NaN'
String representation of ``NaN`` to use.
formatters : list, tuple or dict of one-param. functions, optional
Formatter functions to apply to columns' elements by position or
name.
The result of each function must be a unicode string.
List/tuple must be of length equal to the number of columns.
float_format : one-parameter function, optional, default None
Formatter function to apply to columns' elements if they are
floats. This function must return a unicode string and will be
applied only to the non-``NaN`` elements, with ``NaN`` being
handled by ``na_rep``.
.. versionchanged:: 1.2.0
sparsify : bool, optional, default True
Set to False for a DataFrame with a hierarchical index to print
every multiindex key at each row.
index_names : bool, optional, default True
Prints the names of the indexes.
justify : str, default None
How to justify the column labels. If None uses the option from
the print configuration (controlled by set_option), 'right' out
of the box. Valid values are
* left
* right
* center
* justify
* justify-all
* start
* end
* inherit
* match-parent
* initial
* unset.
max_rows : int, optional
Maximum number of rows to display in the console.
max_cols : int, optional
Maximum number of columns to display in the console.
show_dimensions : bool, default False
Display DataFrame dimensions (number of rows by number of columns).
decimal : str, default '.'
Character recognized as decimal separator, e.g. ',' in Europe.
bold_rows : bool, default True
Make the row labels bold in the output.
classes : str or list or tuple, default None
CSS class(es) to apply to the resulting html table.
escape : bool, default True
Convert the characters <, >, and & to HTML-safe sequences.
notebook : {True, False}, default False
Whether the generated HTML is for IPython Notebook.
border : int
A ``border=border`` attribute is included in the opening
`<table>` tag. Default ``pd.options.display.html.border``.
table_id : str, optional
A css id is included in the opening `<table>` tag if specified.
render_links : bool, default False
Convert URLs to HTML links.
encoding : str, default "utf-8"
Set character encoding.
.. versionadded:: 1.0
Returns
-------
str or None
If buf is None, returns the result as a string. Otherwise returns
None.
See Also
--------
to_string : Convert DataFrame to a string.
Convert the object to a JSON string.
Note NaN's and None will be converted to null and datetime objects
will be converted to UNIX timestamps.
Parameters
----------
path_or_buf : str, path object, file-like object, or None, default None
String, path object (implementing os.PathLike[str]), or file-like
object implementing a write() function. If None, the result is
returned as a string.
orient : str
Indication of expected JSON string format.
* Series:
- default is 'index'
- allowed values are: {'split', 'records', 'index', 'table'}.
* DataFrame:
- default is 'columns'
- allowed values are: {'split', 'records', 'index', 'columns',
'values', 'table'}.
* The format of the JSON string:
- 'split' : dict like {'index' -> [index], 'columns' -> [columns],
'data' -> [values]}
- 'records' : list like [{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
- 'columns' : dict like {column -> {index -> value}}
- 'values' : just the values array
- 'table' : dict like {'schema': {schema}, 'data': {data}}
Describing the data, where data component is like ``orient='records'``.
date_format : {None, 'epoch', 'iso'}
Type of date conversion. 'epoch' = epoch milliseconds,
'iso' = ISO8601. The default depends on the `orient`. For
``orient='table'``, the default is 'iso'. For all other orients,
the default is 'epoch'.
double_precision : int, default 10
The number of decimal places to use when encoding
floating point values.
force_ascii : bool, default True
Force encoded string to be ASCII.
date_unit : str, default 'ms' (milliseconds)
The time unit to encode to, governs timestamp and ISO8601
precision. One of 's', 'ms', 'us', 'ns' for second, millisecond,
microsecond, and nanosecond respectively.
default_handler : callable, default None
Handler to call if object cannot otherwise be converted to a
suitable format for JSON. Should receive a single argument which is
the object to convert and return a serialisable object.
lines : bool, default False
If 'orient' is 'records' write out line-delimited json format. Will
throw ValueError if incorrect 'orient' since others are not
list-like.
compression : str or dict, default 'infer'
For on-the-fly compression of the output data. If 'infer' and 'path_or_buf' is
path-like, then detect compression from the following extensions: '.gz',
'.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
(otherwise no compression).
Set to ``None`` for no compression.
Can also be a dict with key ``'method'`` set
to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
key-value pairs are forwarded to
``zipfile.ZipFile``, ``gzip.GzipFile``,
``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
``tarfile.TarFile``, respectively.
As an example, the following could be passed for faster compression and to create
a reproducible gzip archive:
``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.
.. versionadded:: 1.5.0
Added support for `.tar` files.
.. versionchanged:: 1.4.0 Zstandard support.
index : bool, default True
Whether to include the index values in the JSON string. Not
including the index (``index=False``) is only supported when
orient is 'split' or 'table'.
indent : int, optional
Length of whitespace used to indent each record.
.. versionadded:: 1.0.0
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2.0
Returns
-------
None or str
If path_or_buf is None, returns the resulting json format as a
string. Otherwise returns None.
See Also
--------
read_json : Convert a JSON string to pandas object.
Notes
-----
The behavior of ``indent=0`` varies from the stdlib, which does not
indent the output but does insert newlines. Currently, ``indent=0``
and the default ``indent=None`` are equivalent in pandas, though this
may change in a future release.
``orient='table'`` contains a 'pandas_version' field under 'schema'.
This stores the version of `pandas` used in the latest revision of the
schema.
Examples
--------
>>> import json
>>> df = pd.DataFrame(
... [["a", "b"], ["c", "d"]],
... index=["row 1", "row 2"],
... columns=["col 1", "col 2"],
... )
>>> result = df.to_json(orient="split")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4) # doctest: +SKIP
{
"columns": [
"col 1",
"col 2"
],
"index": [
"row 1",
"row 2"
],
"data": [
[
"a",
"b"
],
[
"c",
"d"
]
]
}
Encoding/decoding a Dataframe using ``'records'`` formatted JSON.
Note that index labels are not preserved with this encoding.
>>> result = df.to_json(orient="records")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4) # doctest: +SKIP
[
{
"col 1": "a",
"col 2": "b"
},
{
"col 1": "c",
"col 2": "d"
}
]
Encoding/decoding a Dataframe using ``'index'`` formatted JSON:
>>> result = df.to_json(orient="index")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4) # doctest: +SKIP
{
"row 1": {
"col 1": "a",
"col 2": "b"
},
"row 2": {
"col 1": "c",
"col 2": "d"
}
}
Encoding/decoding a Dataframe using ``'columns'`` formatted JSON:
>>> result = df.to_json(orient="columns")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4) # doctest: +SKIP
{
"col 1": {
"row 1": "a",
"row 2": "c"
},
"col 2": {
"row 1": "b",
"row 2": "d"
}
}
Encoding/decoding a Dataframe using ``'values'`` formatted JSON:
>>> result = df.to_json(orient="values")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4) # doctest: +SKIP
[
[
"a",
"b"
],
[
"c",
"d"
]
]
Encoding with Table Schema:
>>> result = df.to_json(orient="table")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4) # doctest: +SKIP
{
"schema": {
"fields": [
{
"name": "index",
"type": "string"
},
{
"name": "col 1",
"type": "string"
},
{
"name": "col 2",
"type": "string"
}
],
"primaryKey": [
"index"
],
"pandas_version": "1.4.0"
},
"data": [
{
"index": "row 1",
"col 1": "a",
"col 2": "b"
},
{
"index": "row 2",
"col 1": "c",
"col 2": "d"
}
]
}
Render object to a LaTeX tabular, longtable, or nested table.
Requires ``\usepackage{booktabs}``. The output can be copy/pasted
into a main LaTeX document or read from an external file
with ``\input{table.tex}``.
.. versionchanged:: 1.0.0
Added caption and label arguments.
.. versionchanged:: 1.2.0
Added position argument, changed meaning of caption argument.
Parameters
----------
buf : str, Path or StringIO-like, optional, default None
Buffer to write to. If None, the output is returned as a string.
columns : list of label, optional
The subset of columns to write. Writes all columns by default.
col_space : int, optional
The minimum width of each column.
header : bool or list of str, default True
Write out the column names. If a list of strings is given,
it is assumed to be aliases for the column names.
index : bool, default True
Write row names (index).
na_rep : str, default 'NaN'
Missing data representation.
formatters : list of functions or dict of {str: function}, optional
Formatter functions to apply to columns' elements by position or
name. The result of each function must be a unicode string.
List must be of length equal to the number of columns.
float_format : one-parameter function or str, optional, default None
Formatter for floating point numbers. For example
``float_format="%.2f"`` and ``float_format="{:0.2f}".format`` will
both result in 0.1234 being formatted as 0.12.
sparsify : bool, optional
Set to False for a DataFrame with a hierarchical index to print
every multiindex key at each row. By default, the value will be
read from the config module.
index_names : bool, default True
Prints the names of the indexes.
bold_rows : bool, default False
Make the row labels bold in the output.
column_format : str, optional
The columns format as specified in `LaTeX table format
<https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g. 'rcl' for 3
columns. By default, 'l' will be used for all columns except
columns of numbers, which default to 'r'.
longtable : bool, optional
By default, the value will be read from the pandas config
module. Use a longtable environment instead of tabular. Requires
adding a \usepackage{longtable} to your LaTeX preamble.
escape : bool, optional
By default, the value will be read from the pandas config
module. When set to False prevents from escaping latex special
characters in column names.
encoding : str, optional
A string representing the encoding to use in the output file,
defaults to 'utf-8'.
decimal : str, default '.'
Character recognized as decimal separator, e.g. ',' in Europe.
multicolumn : bool, default True
Use \multicolumn to enhance MultiIndex columns.
The default will be read from the config module.
multicolumn_format : str, default 'l'
The alignment for multicolumns, similar to `column_format`
The default will be read from the config module.
multirow : bool, default False
Use \multirow to enhance MultiIndex rows. Requires adding a
\usepackage{multirow} to your LaTeX preamble. Will print
centered labels (instead of top-aligned) across the contained
rows, separating groups via clines. The default will be read
from the pandas config module.
caption : str or tuple, optional
Tuple (full_caption, short_caption),
which results in ``\caption[short_caption]{full_caption}``;
if a single string is passed, no short caption will be set.
.. versionadded:: 1.0.0
.. versionchanged:: 1.2.0
Optionally allow caption to be a tuple ``(full_caption, short_caption)``.
label : str, optional
The LaTeX label to be placed inside ``\label{}`` in the output.
This is used with ``\ref{}`` in the main ``.tex`` file.
.. versionadded:: 1.0.0
position : str, optional
The LaTeX positional argument for tables, to be placed after
``\begin{}`` in the output.
.. versionadded:: 1.2.0
Returns
-------
str or None
If buf is None, returns the result as a string. Otherwise returns
None.
See Also
--------
io.formats.style.Styler.to_latex : Render a DataFrame to LaTeX
with conditional formatting.
DataFrame.to_string : Render a DataFrame to a console-friendly
tabular output.
DataFrame.to_html : Render a DataFrame as an HTML table.
Examples
--------
>>> df = pd.DataFrame(dict(name=['Raphael', 'Donatello'],
... mask=['red', 'purple'],
... weapon=['sai', 'bo staff']))
>>> print(df.to_latex(index=False)) # doctest: +SKIP
\begin{tabular}{lll}
\toprule
name & mask & weapon \\
\midrule
Raphael & red & sai \\
Donatello & purple & bo staff \\
\bottomrule
\end{tabular}
Print DataFrame in Markdown-friendly format.
.. versionadded:: 1.0.0
Parameters
----------
buf : str, Path or StringIO-like, optional, default None
Buffer to write to. If None, the output is returned as a string.
mode : str, optional
Mode in which file is opened, "wt" by default.
index : bool, optional, default True
Add index (row) labels.
.. versionadded:: 1.1.0
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2.0
**kwargs
These parameters will be passed to `tabulate <https://pypi.org/project/tabulate>`_.
Returns
-------
str
DataFrame in Markdown-friendly format.
Notes
-----
Requires the `tabulate <https://pypi.org/project/tabulate>`_ package.
Examples
--------
>>> df = pd.DataFrame(
... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]}
... )
>>> print(df.to_markdown())
| | animal_1 | animal_2 |
|---:|:-----------|:-----------|
| 0 | elk | dog |
| 1 | pig | quetzal |
Output markdown with a tabulate option.
>>> print(df.to_markdown(tablefmt="grid"))
+----+------------+------------+
| | animal_1 | animal_2 |
+====+============+============+
| 0 | elk | dog |
+----+------------+------------+
| 1 | pig | quetzal |
+----+------------+------------+
Convert the DataFrame to a NumPy array.
By default, the dtype of the returned array will be the common NumPy
dtype of all types in the DataFrame. For example, if the dtypes are
``float16`` and ``float32``, the results dtype will be ``float32``.
This may require copying data and coercing values, which may be
expensive.
Parameters
----------
dtype : str or numpy.dtype, optional
The dtype to pass to :meth:`numpy.asarray`.
copy : bool, default False
Whether to ensure that the returned value is not a view on
another array. Note that ``copy=False`` does not *ensure* that
``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
a copy is made, even if not strictly necessary.
na_value : Any, optional
The value to use for missing values. The default value depends
on `dtype` and the dtypes of the DataFrame columns.
.. versionadded:: 1.1.0
Returns
-------
numpy.ndarray
See Also
--------
Series.to_numpy : Similar method for Series.
Examples
--------
>>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy()
array([[1, 3],
[2, 4]])
With heterogeneous data, the lowest common type will have to
be used.
>>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]})
>>> df.to_numpy()
array([[1. , 3. ],
[2. , 4.5]])
For a mix of numeric and non-numeric types, the output array will
have object dtype.
>>> df['C'] = pd.date_range('2000', periods=2)
>>> df.to_numpy()
array([[1, 3.0, Timestamp('2000-01-01 00:00:00')],
[2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
Write a DataFrame to the ORC format.
.. versionadded:: 1.5.0
Parameters
----------
path : str, file-like object or None, default None
If a string, it will be used as Root Directory path
when writing a partitioned dataset. By file-like object,
we refer to objects with a write() method, such as a file handle
(e.g. via builtin open function). If path is None,
a bytes object is returned.
engine : str, default 'pyarrow'
ORC library to use. Pyarrow must be >= 7.0.0.
index : bool, optional
If ``True``, include the dataframe's index(es) in the file output.
If ``False``, they will not be written to the file.
If ``None``, similar to ``infer`` the dataframe's index(es)
will be saved. However, instead of being saved as values,
the RangeIndex will be stored as a range in the metadata so it
doesn't require much space and is faster. Other indexes will
be included as columns in the file output.
engine_kwargs : dict[str, Any] or None, default None
Additional keyword arguments passed to :func:`pyarrow.orc.write_table`.
Returns
-------
bytes if no path argument is provided else None
Raises
------
NotImplementedError
Dtype of one or more columns is category, unsigned integers, interval,
period or sparse.
ValueError
engine is not pyarrow.
See Also
--------
read_orc : Read a ORC file.
DataFrame.to_parquet : Write a parquet file.
DataFrame.to_csv : Write a csv file.
DataFrame.to_sql : Write to a sql table.
DataFrame.to_hdf : Write to hdf.
Notes
-----
* Before using this function you should read the :ref:`user guide about
ORC <io.orc>` and :ref:`install optional dependencies <install.warn_orc>`.
* This function requires `pyarrow <https://arrow.apache.org/docs/python/>`_
library.
* For supported dtypes please refer to `supported ORC features in Arrow
<https://arrow.apache.org/docs/cpp/orc.html#data-types>`__.
* Currently timezones in datetime columns are not preserved when a
dataframe is converted into ORC files.
Examples
--------
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [4, 3]})
>>> df.to_orc('df.orc') # doctest: +SKIP
>>> pd.read_orc('df.orc') # doctest: +SKIP
col1 col2
0 1 4
1 2 3
If you want to get a buffer to the orc content you can write it to io.BytesIO
>>> import io
>>> b = io.BytesIO(df.to_orc()) # doctest: +SKIP
>>> b.seek(0) # doctest: +SKIP
0
>>> content = b.read() # doctest: +SKIP
Write a DataFrame to the binary parquet format.
This function writes the dataframe as a `parquet file
<https://parquet.apache.org/>`_. You can choose different parquet
backends, and have the option of compression. See
:ref:`the user guide <io.parquet>` for more details.
Parameters
----------
path : str, path object, file-like object, or None, default None
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``write()`` function. If None, the result is
returned as bytes. If a string or path, it will be used as Root Directory
path when writing a partitioned dataset.
.. versionchanged:: 1.2.0
Previously this was "fname"
engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
Name of the compression to use. Use ``None`` for no compression.
index : bool, default None
If ``True``, include the dataframe's index(es) in the file output.
If ``False``, they will not be written to the file.
If ``None``, similar to ``True`` the dataframe's index(es)
will be saved. However, instead of being saved as values,
the RangeIndex will be stored as a range in the metadata so it
doesn't require much space and is faster. Other indexes will
be included as columns in the file output.
partition_cols : list, optional, default None
Column names by which to partition the dataset.
Columns are partitioned in the order they are given.
Must be None if path is not a string.
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2.0
**kwargs
Additional arguments passed to the parquet library. See
:ref:`pandas io <io.parquet>` for more details.
Returns
-------
bytes if no path argument is provided else None
See Also
--------
read_parquet : Read a parquet file.
DataFrame.to_orc : Write an orc file.
DataFrame.to_csv : Write a csv file.
DataFrame.to_sql : Write to a sql table.
DataFrame.to_hdf : Write to hdf.
Notes
-----
This function requires either the `fastparquet
<https://pypi.org/project/fastparquet>`_ or `pyarrow
<https://arrow.apache.org/docs/python/>`_ library.
Examples
--------
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
>>> df.to_parquet('df.parquet.gzip',
... compression='gzip') # doctest: +SKIP
>>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP
col1 col2
0 1 3
1 2 4
If you want to get a buffer to the parquet content you can use a io.BytesIO
object, as long as you don't use partition_cols, which creates multiple files.
>>> import io
>>> f = io.BytesIO()
>>> df.to_parquet(f)
>>> f.seek(0)
0
>>> content = f.read()
Convert DataFrame from DatetimeIndex to PeriodIndex.
Convert DataFrame from DatetimeIndex to PeriodIndex with desired
frequency (inferred from index if not passed).
Parameters
----------
freq : str, default
Frequency of the PeriodIndex.
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to convert (the index by default).
copy : bool, default True
If False then underlying input data is not copied.
Returns
-------
DataFrame with PeriodIndex
Examples
--------
>>> idx = pd.to_datetime(
... [
... "2001-03-31 00:00:00",
... "2002-05-31 00:00:00",
... "2003-08-31 00:00:00",
... ]
... )
>>> idx
DatetimeIndex(['2001-03-31', '2002-05-31', '2003-08-31'],
dtype='datetime64[ns]', freq=None)
>>> idx.to_period("M")
PeriodIndex(['2001-03', '2002-05', '2003-08'], dtype='period[M]')
For the yearly frequency
>>> idx.to_period("Y")
PeriodIndex(['2001', '2002', '2003'], dtype='period[A-DEC]')
Pickle (serialize) object to file.
Parameters
----------
path : str, path object, or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``write()`` function. File path where
the pickled object will be stored.
compression : str or dict, default 'infer'
For on-the-fly compression of the output data. If 'infer' and 'path' is
path-like, then detect compression from the following extensions: '.gz',
'.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
(otherwise no compression).
Set to ``None`` for no compression.
Can also be a dict with key ``'method'`` set
to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
key-value pairs are forwarded to
``zipfile.ZipFile``, ``gzip.GzipFile``,
``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
``tarfile.TarFile``, respectively.
As an example, the following could be passed for faster compression and to create
a reproducible gzip archive:
``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.
.. versionadded:: 1.5.0
Added support for `.tar` files.
protocol : int
Int which indicates which protocol should be used by the pickler,
default HIGHEST_PROTOCOL (see [1]_ paragraph 12.1.2). The possible
values are 0, 1, 2, 3, 4, 5. A negative value for the protocol
parameter is equivalent to setting its value to HIGHEST_PROTOCOL.
.. [1] https://docs.python.org/3/library/pickle.html.
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2.0
See Also
--------
read_pickle : Load pickled pandas object (or any object) from file.
DataFrame.to_hdf : Write DataFrame to an HDF5 file.
DataFrame.to_sql : Write DataFrame to a SQL database.
DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
Examples
--------
>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)}) # doctest: +SKIP
>>> original_df # doctest: +SKIP
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> original_df.to_pickle("./dummy.pkl") # doctest: +SKIP
>>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP
>>> unpickled_df # doctest: +SKIP
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
Convert DataFrame to a NumPy record array.
Index will be included as the first field of the record array if
requested.
Parameters
----------
index : bool, default True
Include index in resulting record array, stored in 'index'
field or using the index label, if set.
column_dtypes : str, type, dict, default None
If a string or type, the data type to store all columns. If
a dictionary, a mapping of column names and indices (zero-indexed)
to specific data types.
index_dtypes : str, type, dict, default None
If a string or type, the data type to store all index levels. If
a dictionary, a mapping of index level names and indices
(zero-indexed) to specific data types.
This mapping is applied only if `index=True`.
Returns
-------
numpy.recarray
NumPy ndarray with the DataFrame labels as fields and each row
of the DataFrame as entries.
See Also
--------
DataFrame.from_records: Convert structured or record ndarray
to DataFrame.
numpy.recarray: An ndarray that allows field access using
attributes, analogous to typed columns in a
spreadsheet.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
... index=['a', 'b'])
>>> df
A B
a 1 0.50
b 2 0.75
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])
If the DataFrame index has no label then the recarray field name
is set to 'index'. If the index has a label then this is used as the
field name:
>>> df.index = df.index.rename("I")
>>> df.to_records()
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])
The index can be excluded from the record array:
>>> df.to_records(index=False)
rec.array([(1, 0.5 ), (2, 0.75)],
dtype=[('A', '<i8'), ('B', '<f8')])
Data types can be specified for the columns:
>>> df.to_records(column_dtypes={"A": "int32"})
rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])
As well as for the index:
>>> df.to_records(index_dtypes="<S2")
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])
>>> index_dtypes = f"<S{df.index.str.len().max()}"
>>> df.to_records(index_dtypes=index_dtypes)
rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
Write records stored in a DataFrame to a SQL database.
Databases supported by SQLAlchemy [1]_ are supported. Tables can be
newly created, appended to, or overwritten.
Parameters
----------
name : str
Name of SQL table.
con : sqlalchemy.engine.(Engine or Connection) or sqlite3.Connection
Using SQLAlchemy makes it possible to use any DB supported by that
library. Legacy support is provided for sqlite3.Connection objects. The user
is responsible for engine disposal and connection closure for the SQLAlchemy
connectable See `here <https://docs.sqlalchemy.org/en/13/core/connections.html>`_.
schema : str, optional
Specify the schema (if database flavor supports this). If None, use
default schema.
if_exists : {'fail', 'replace', 'append'}, default 'fail'
How to behave if the table already exists.
* fail: Raise a ValueError.
* replace: Drop the table before inserting new values.
* append: Insert new values to the existing table.
index : bool, default True
Write DataFrame index as a column. Uses `index_label` as the column
name in the table.
index_label : str or sequence, default None
Column label for index column(s). If None is given (default) and
`index` is True, then the index names are used.
A sequence should be given if the DataFrame uses MultiIndex.
chunksize : int, optional
Specify the number of rows in each batch to be written at a time.
By default, all rows will be written at once.
dtype : dict or scalar, optional
Specifying the datatype for columns. If a dictionary is used, the
keys should be the column names and the values should be the
SQLAlchemy types or strings for the sqlite3 legacy mode. If a
scalar is provided, it will be applied to all columns.
method : {None, 'multi', callable}, optional
Controls the SQL insertion clause used:
* None : Uses standard SQL ``INSERT`` clause (one per row).
* 'multi': Pass multiple values in a single ``INSERT`` clause.
* callable with signature ``(pd_table, conn, keys, data_iter)``.
Details and a sample callable implementation can be found in the
section :ref:`insert method <io.sql.method>`.
Returns
-------
None or int
Number of rows affected by to_sql. None is returned if the callable
passed into ``method`` does not return an integer number of rows.
The number of returned rows affected is the sum of the ``rowcount``
attribute of ``sqlite3.Cursor`` or SQLAlchemy connectable which may not
reflect the exact number of written rows as stipulated in the
`sqlite3 <https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.rowcount>`__ or
`SQLAlchemy <https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.BaseCursorResult.rowcount>`__.
.. versionadded:: 1.4.0
Raises
------
ValueError
When the table already exists and `if_exists` is 'fail' (the
default).
See Also
--------
read_sql : Read a DataFrame from a table.
Notes
-----
Timezone aware datetime columns will be written as
``Timestamp with timezone`` type with SQLAlchemy if supported by the
database. Otherwise, the datetimes will be stored as timezone unaware
timestamps local to the original timezone.
References
----------
.. [1] https://docs.sqlalchemy.org
.. [2] https://www.python.org/dev/peps/pep-0249/
Examples
--------
Create an in-memory SQLite database.
>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite://', echo=False)
Create a table from scratch with 3 rows.
>>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']})
>>> df
name
0 User 1
1 User 2
2 User 3
>>> df.to_sql('users', con=engine)
3
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3')]
An `sqlalchemy.engine.Connection` can also be passed to `con`:
>>> with engine.begin() as connection:
... df1 = pd.DataFrame({'name' : ['User 4', 'User 5']})
... df1.to_sql('users', con=connection, if_exists='append')
2
This is allowed to support operations that require that the same
DBAPI connection is used for the entire operation.
>>> df2 = pd.DataFrame({'name' : ['User 6', 'User 7']})
>>> df2.to_sql('users', con=engine, if_exists='append')
2
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 1'), (1, 'User 2'), (2, 'User 3'),
(0, 'User 4'), (1, 'User 5'), (0, 'User 6'),
(1, 'User 7')]
Overwrite the table with just ``df2``.
>>> df2.to_sql('users', con=engine, if_exists='replace',
... index_label='id')
2
>>> engine.execute("SELECT * FROM users").fetchall()
[(0, 'User 6'), (1, 'User 7')]
Specify the dtype (especially useful for integers with missing values).
Notice that while pandas is forced to store the data as floating point,
the database supports nullable integers. When fetching the data with
Python, we get back integer scalars.
>>> df = pd.DataFrame({"A": [1, None, 2]})
>>> df
A
0 1.0
1 NaN
2 2.0
>>> from sqlalchemy.types import Integer
>>> df.to_sql('integers', con=engine, index=False,
... dtype={"A": Integer()})
3
>>> engine.execute("SELECT * FROM integers").fetchall()
[(1,), (None,), (2,)]
Export DataFrame object to Stata dta format.
Writes the DataFrame to a Stata dataset file.
"dta" files contain a Stata dataset.
Parameters
----------
path : str, path object, or buffer
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``write()`` function.
.. versionchanged:: 1.0.0
Previously this was "fname"
convert_dates : dict
Dictionary mapping columns containing datetime types to stata
internal format to use when writing the dates. Options are 'tc',
'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer
or a name. Datetime columns that do not have a conversion type
specified will be converted to 'tc'. Raises NotImplementedError if
a datetime column has timezone information.
write_index : bool
Write the index to Stata dataset.
byteorder : str
Can be ">", "<", "little", or "big". default is `sys.byteorder`.
time_stamp : datetime
A datetime to use as file creation date. Default is the current
time.
data_label : str, optional
A label for the data set. Must be 80 characters or smaller.
variable_labels : dict
Dictionary containing columns as keys and variable labels as
values. Each label must be 80 characters or smaller.
version : {114, 117, 118, 119, None}, default 114
Version to use in the output dta file. Set to None to let pandas
decide between 118 or 119 formats depending on the number of
columns in the frame. Version 114 can be read by Stata 10 and
later. Version 117 can be read by Stata 13 or later. Version 118
is supported in Stata 14 and later. Version 119 is supported in
Stata 15 and later. Version 114 limits string variables to 244
characters or fewer while versions 117 and later allow strings
with lengths up to 2,000,000 characters. Versions 118 and 119
support Unicode characters, and version 119 supports more than
32,767 variables.
Version 119 should usually only be used when the number of
variables exceeds the capacity of dta format 118. Exporting
smaller datasets in format 119 may have unintended consequences,
and, as of November 2020, Stata SE cannot read version 119 files.
.. versionchanged:: 1.0.0
Added support for formats 118 and 119.
convert_strl : list, optional
List of column names to convert to string columns to Stata StrL
format. Only available if version is 117. Storing strings in the
StrL format can produce smaller dta files if strings have more than
8 characters and values are repeated.
compression : str or dict, default 'infer'
For on-the-fly compression of the output data. If 'infer' and 'path' is
path-like, then detect compression from the following extensions: '.gz',
'.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
(otherwise no compression).
Set to ``None`` for no compression.
Can also be a dict with key ``'method'`` set
to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
key-value pairs are forwarded to
``zipfile.ZipFile``, ``gzip.GzipFile``,
``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
``tarfile.TarFile``, respectively.
As an example, the following could be passed for faster compression and to create
a reproducible gzip archive:
``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.
.. versionadded:: 1.5.0
Added support for `.tar` files.
.. versionadded:: 1.1.0
.. versionchanged:: 1.4.0 Zstandard support.
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2.0
value_labels : dict of dicts
Dictionary containing columns as keys and dictionaries of column value
to labels as values. Labels for a single variable must be 32,000
characters or smaller.
.. versionadded:: 1.4.0
Raises
------
NotImplementedError
* If datetimes contain timezone information
* Column dtype is not representable in Stata
ValueError
* Columns listed in convert_dates are neither datetime64[ns]
or datetime.datetime
* Column listed in convert_dates is not in DataFrame
* Categorical label contains more than 32,000 characters
See Also
--------
read_stata : Import Stata data files.
io.stata.StataWriter : Low-level writer for Stata data files.
io.stata.StataWriter117 : Low-level writer for version 117 files.
Examples
--------
>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',
... 'parrot'],
... 'speed': [350, 18, 361, 15]})
>>> df.to_stata('animals.dta') # doctest: +SKIP
Render a DataFrame to a console-friendly tabular output.
Parameters
----------
buf : str, Path or StringIO-like, optional, default None
Buffer to write to. If None, the output is returned as a string.
columns : sequence, optional, default None
The subset of columns to write. Writes all columns by default.
col_space : int, list or dict of int, optional
The minimum width of each column. If a list of ints is given every integers corresponds with one column. If a dict is given, the key references the column, while the value defines the space to use..
header : bool or sequence of str, optional
Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.
index : bool, optional, default True
Whether to print index (row) labels.
na_rep : str, optional, default 'NaN'
String representation of ``NaN`` to use.
formatters : list, tuple or dict of one-param. functions, optional
Formatter functions to apply to columns' elements by position or
name.
The result of each function must be a unicode string.
List/tuple must be of length equal to the number of columns.
float_format : one-parameter function, optional, default None
Formatter function to apply to columns' elements if they are
floats. This function must return a unicode string and will be
applied only to the non-``NaN`` elements, with ``NaN`` being
handled by ``na_rep``.
.. versionchanged:: 1.2.0
sparsify : bool, optional, default True
Set to False for a DataFrame with a hierarchical index to print
every multiindex key at each row.
index_names : bool, optional, default True
Prints the names of the indexes.
justify : str, default None
How to justify the column labels. If None uses the option from
the print configuration (controlled by set_option), 'right' out
of the box. Valid values are
* left
* right
* center
* justify
* justify-all
* start
* end
* inherit
* match-parent
* initial
* unset.
max_rows : int, optional
Maximum number of rows to display in the console.
max_cols : int, optional
Maximum number of columns to display in the console.
show_dimensions : bool, default False
Display DataFrame dimensions (number of rows by number of columns).
decimal : str, default '.'
Character recognized as decimal separator, e.g. ',' in Europe.
line_width : int, optional
Width to wrap a line in characters.
min_rows : int, optional
The number of rows to display in the console in a truncated repr
(when number of rows is above `max_rows`).
max_colwidth : int, optional
Max width to truncate each column in characters. By default, no limit.
.. versionadded:: 1.0.0
encoding : str, default "utf-8"
Set character encoding.
.. versionadded:: 1.0
Returns
-------
str or None
If buf is None, returns the result as a string. Otherwise returns
None.
See Also
--------
to_html : Convert DataFrame to HTML.
Examples
--------
>>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]}
>>> df = pd.DataFrame(d)
>>> print(df.to_string())
col1 col2
0 1 4
1 2 5
2 3 6
Cast to DatetimeIndex of timestamps, at *beginning* of period.
Parameters
----------
freq : str, default frequency of PeriodIndex
Desired frequency.
how : {'s', 'e', 'start', 'end'}
Convention for converting period to timestamp; start of period
vs. end.
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to convert (the index by default).
copy : bool, default True
If False then underlying input data is not copied.
Returns
-------
DataFrame with DatetimeIndex
Return an xarray object from the pandas object.
Returns
-------
xarray.DataArray or xarray.Dataset
Data in the pandas structure converted to Dataset if the object is
a DataFrame, or a DataArray if the object is a Series.
See Also
--------
DataFrame.to_hdf : Write DataFrame to an HDF5 file.
DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
Notes
-----
See the `xarray docs <https://xarray.pydata.org/en/stable/>`__
Examples
--------
>>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2),
... ('parrot', 'bird', 24.0, 2),
... ('lion', 'mammal', 80.5, 4),
... ('monkey', 'mammal', np.nan, 4)],
... columns=['name', 'class', 'max_speed',
... 'num_legs'])
>>> df
name class max_speed num_legs
0 falcon bird 389.0 2
1 parrot bird 24.0 2
2 lion mammal 80.5 4
3 monkey mammal NaN 4
>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 4)
Coordinates:
* index (index) int64 0 1 2 3
Data variables:
name (index) object 'falcon' 'parrot' 'lion' 'monkey'
class (index) object 'bird' 'bird' 'mammal' 'mammal'
max_speed (index) float64 389.0 24.0 80.5 nan
num_legs (index) int64 2 2 4 4
>>> df['max_speed'].to_xarray()
<xarray.DataArray 'max_speed' (index: 4)>
array([389. , 24. , 80.5, nan])
Coordinates:
* index (index) int64 0 1 2 3
>>> dates = pd.to_datetime(['2018-01-01', '2018-01-01',
... '2018-01-02', '2018-01-02'])
>>> df_multiindex = pd.DataFrame({'date': dates,
... 'animal': ['falcon', 'parrot',
... 'falcon', 'parrot'],
... 'speed': [350, 18, 361, 15]})
>>> df_multiindex = df_multiindex.set_index(['date', 'animal'])
>>> df_multiindex
speed
date animal
2018-01-01 falcon 350
parrot 18
2018-01-02 falcon 361
parrot 15
>>> df_multiindex.to_xarray()
<xarray.Dataset>
Dimensions: (date: 2, animal: 2)
Coordinates:
* date (date) datetime64[ns] 2018-01-01 2018-01-02
* animal (animal) object 'falcon' 'parrot'
Data variables:
speed (date, animal) int64 350 18 361 15
Render a DataFrame to an XML document.
.. versionadded:: 1.3.0
Parameters
----------
path_or_buffer : str, path object, file-like object, or None, default None
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a ``write()`` function. If None, the result is returned
as a string.
index : bool, default True
Whether to include index in XML document.
root_name : str, default 'data'
The name of root element in XML document.
row_name : str, default 'row'
The name of row element in XML document.
na_rep : str, optional
Missing data representation.
attr_cols : list-like, optional
List of columns to write as attributes in row element.
Hierarchical columns will be flattened with underscore
delimiting the different levels.
elem_cols : list-like, optional
List of columns to write as children in row element. By default,
all columns output as children of row element. Hierarchical
columns will be flattened with underscore delimiting the
different levels.
namespaces : dict, optional
All namespaces to be defined in root element. Keys of dict
should be prefix names and values of dict corresponding URIs.
Default namespaces should be given empty string key. For
example, ::
namespaces = {"": "https://example.com"}
prefix : str, optional
Namespace prefix to be used for every element and/or attribute
in document. This should be one of the keys in ``namespaces``
dict.
encoding : str, default 'utf-8'
Encoding of the resulting document.
xml_declaration : bool, default True
Whether to include the XML declaration at start of document.
pretty_print : bool, default True
Whether output should be pretty printed with indentation and
line breaks.
parser : {'lxml','etree'}, default 'lxml'
Parser module to use for building of tree. Only 'lxml' and
'etree' are supported. With 'lxml', the ability to use XSLT
stylesheet is supported.
stylesheet : str, path object or file-like object, optional
A URL, file-like object, or a raw string containing an XSLT
script used to transform the raw XML output. Script should use
layout of elements and attributes from original output. This
argument requires ``lxml`` to be installed. Only XSLT 1.0
scripts and not later versions is currently supported.
compression : str or dict, default 'infer'
For on-the-fly compression of the output data. If 'infer' and 'path_or_buffer' is
path-like, then detect compression from the following extensions: '.gz',
'.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
(otherwise no compression).
Set to ``None`` for no compression.
Can also be a dict with key ``'method'`` set
to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
key-value pairs are forwarded to
``zipfile.ZipFile``, ``gzip.GzipFile``,
``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
``tarfile.TarFile``, respectively.
As an example, the following could be passed for faster compression and to create
a reproducible gzip archive:
``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.
.. versionadded:: 1.5.0
Added support for `.tar` files.
.. versionchanged:: 1.4.0 Zstandard support.
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
Returns
-------
None or str
If ``io`` is None, returns the resulting XML format as a
string. Otherwise returns None.
See Also
--------
to_json : Convert the pandas object to a JSON string.
to_html : Convert DataFrame to a html.
Examples
--------
>>> df = pd.DataFrame({'shape': ['square', 'circle', 'triangle'],
... 'degrees': [360, 360, 180],
... 'sides': [4, np.nan, 3]})
>>> df.to_xml() # doctest: +SKIP
<?xml version='1.0' encoding='utf-8'?>
<data>
<row>
<index>0</index>
<shape>square</shape>
<degrees>360</degrees>
<sides>4.0</sides>
</row>
<row>
<index>1</index>
<shape>circle</shape>
<degrees>360</degrees>
<sides/>
</row>
<row>
<index>2</index>
<shape>triangle</shape>
<degrees>180</degrees>
<sides>3.0</sides>
</row>
</data>
>>> df.to_xml(attr_cols=[
... 'index', 'shape', 'degrees', 'sides'
... ]) # doctest: +SKIP
<?xml version='1.0' encoding='utf-8'?>
<data>
<row index="0" shape="square" degrees="360" sides="4.0"/>
<row index="1" shape="circle" degrees="360"/>
<row index="2" shape="triangle" degrees="180" sides="3.0"/>
</data>
>>> df.to_xml(namespaces={"doc": "https://example.com"},
... prefix="doc") # doctest: +SKIP
<?xml version='1.0' encoding='utf-8'?>
<doc:data xmlns:doc="https://example.com">
<doc:row>
<doc:index>0</doc:index>
<doc:shape>square</doc:shape>
<doc:degrees>360</doc:degrees>
<doc:sides>4.0</doc:sides>
</doc:row>
<doc:row>
<doc:index>1</doc:index>
<doc:shape>circle</doc:shape>
<doc:degrees>360</doc:degrees>
<doc:sides/>
</doc:row>
<doc:row>
<doc:index>2</doc:index>
<doc:shape>triangle</doc:shape>
<doc:degrees>180</doc:degrees>
<doc:sides>3.0</doc:sides>
</doc:row>
</doc:data>
Call ``func`` on self producing a DataFrame with the same axis shape as self.
Parameters
----------
func : function, str, list-like or dict-like
Function to use for transforming the data. If a function, must either
work when passed a DataFrame or when passed to DataFrame.apply. If func
is both list-like and dict-like, dict-like behavior takes precedence.
Accepted combinations are:
- function
- string function name
- list-like of functions and/or function names, e.g. ``[np.exp, 'sqrt']``
- dict-like of axis labels -> functions, function names or list-like of such.
axis : {0 or 'index', 1 or 'columns'}, default 0
If 0 or 'index': apply function to each column.
If 1 or 'columns': apply function to each row.
*args
Positional arguments to pass to `func`.
**kwargs
Keyword arguments to pass to `func`.
Returns
-------
DataFrame
A DataFrame that must have the same length as self.
Raises
------
ValueError : If the returned DataFrame has a different length than self.
See Also
--------
DataFrame.agg : Only perform aggregating type operations.
DataFrame.apply : Invoke function on a DataFrame.
Notes
-----
Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.
Examples
--------
>>> df = pd.DataFrame({'A': range(3), 'B': range(1, 4)})
>>> df
A B
0 0 1
1 1 2
2 2 3
>>> df.transform(lambda x: x + 1)
A B
0 1 2
1 2 3
2 3 4
Even though the resulting DataFrame must have the same length as the
input DataFrame, it is possible to provide several input functions:
>>> s = pd.Series(range(3))
>>> s
0 0
1 1
2 2
dtype: int64
>>> s.transform([np.sqrt, np.exp])
sqrt exp
0 0.000000 1.000000
1 1.000000 2.718282
2 1.414214 7.389056
You can call transform on a GroupBy object:
>>> df = pd.DataFrame({
... "Date": [
... "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05",
... "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05"],
... "Data": [5, 8, 6, 1, 50, 100, 60, 120],
... })
>>> df
Date Data
0 2015-05-08 5
1 2015-05-07 8
2 2015-05-06 6
3 2015-05-05 1
4 2015-05-08 50
5 2015-05-07 100
6 2015-05-06 60
7 2015-05-05 120
>>> df.groupby('Date')['Data'].transform('sum')
0 55
1 108
2 66
3 121
4 55
5 108
6 66
7 121
Name: Data, dtype: int64
>>> df = pd.DataFrame({
... "c": [1, 1, 1, 2, 2, 2, 2],
... "type": ["m", "n", "o", "m", "m", "n", "n"]
... })
>>> df
c type
0 1 m
1 1 n
2 1 o
3 2 m
4 2 m
5 2 n
6 2 n
>>> df['size'] = df.groupby('c')['type'].transform(len)
>>> df
c type size
0 1 m 3
1 1 n 3
2 1 o 3
3 2 m 4
4 2 m 4
5 2 n 4
6 2 n 4
Transpose index and columns.
Reflect the DataFrame over its main diagonal by writing rows as columns
and vice-versa. The property :attr:`.T` is an accessor to the method
:meth:`transpose`.
Parameters
----------
*args : tuple, optional
Accepted for compatibility with NumPy.
copy : bool, default False
Whether to copy the data after transposing, even for DataFrames
with a single dtype.
Note that a copy is always required for mixed dtype DataFrames,
or for DataFrames with any extension types.
Returns
-------
DataFrame
The transposed DataFrame.
See Also
--------
numpy.transpose : Permute the dimensions of a given array.
Notes
-----
Transposing a DataFrame with mixed dtypes will result in a homogeneous
DataFrame with the `object` dtype. In such a case, a copy of the data
is always made.
Examples
--------
**Square DataFrame with homogeneous dtype**
>>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
>>> df1 = pd.DataFrame(data=d1)
>>> df1
col1 col2
0 1 3
1 2 4
>>> df1_transposed = df1.T # or df1.transpose()
>>> df1_transposed
0 1
col1 1 2
col2 3 4
When the dtype is homogeneous in the original DataFrame, we get a
transposed DataFrame with the same dtype:
>>> df1.dtypes
col1 int64
col2 int64
dtype: object
>>> df1_transposed.dtypes
0 int64
1 int64
dtype: object
**Non-square DataFrame with mixed dtypes**
>>> d2 = {'name': ['Alice', 'Bob'],
... 'score': [9.5, 8],
... 'employed': [False, True],
... 'kids': [0, 0]}
>>> df2 = pd.DataFrame(data=d2)
>>> df2
name score employed kids
0 Alice 9.5 False 0
1 Bob 8.0 True 0
>>> df2_transposed = df2.T # or df2.transpose()
>>> df2_transposed
0 1
name Alice Bob
score 9.5 8.0
employed False True
kids 0 0
When the DataFrame has mixed dtypes, we get a transposed DataFrame with
the `object` dtype:
>>> df2.dtypes
name object
score float64
employed bool
kids int64
dtype: object
>>> df2_transposed.dtypes
0 object
1 object
dtype: object
Get Floating division of dataframe and other, element-wise (binary operator `truediv`).
Equivalent to ``dataframe / other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rtruediv`.
Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.
Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
Whether to compare by the index (0 or 'index') or columns.
(1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
Broadcast across a level, matching Index values on the
passed MultiIndex level.
fill_value : float or None, default None
Fill existing missing (NaN) values, and any new element needed for
successful DataFrame alignment, with this value before computation.
If data in both corresponding DataFrame locations is missing
the result will be missing.
Returns
-------
DataFrame
Result of the arithmetic operation.
See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.
Notes
-----
Mismatched indices will be unioned together.
Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df
angles degrees
circle 0 360
triangle 3 180
rectangle 4 360
Add a scalar with operator version which return the same
results.
>>> df + 1
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
>>> df.add(1)
angles degrees
circle 1 361
triangle 4 181
rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10)
angles degrees
circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0
>>> df.rdiv(10)
angles degrees
circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2]
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub([1, 2], axis='columns')
angles degrees
circle -1 358
triangle 2 178
rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
... axis='index')
angles degrees
circle -1 359
triangle 2 179
rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2})
angles degrees
circle 0 720
triangle 0 360
rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
angles degrees
circle 0 0
triangle 6 360
rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]},
... index=['circle', 'triangle', 'rectangle'])
>>> other
angles
circle 0
triangle 3
rectangle 4
>>> df * other
angles degrees
circle 0 NaN
triangle 9 NaN
rectangle 16 NaN
>>> df.mul(other, fill_value=0)
angles degrees
circle 0 0.0
triangle 9 0.0
rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex
angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360
B square 4 360
pentagon 5 540
hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0)
angles degrees
A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0
B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0
Truncate a Series or DataFrame before and after some index value.
This is a useful shorthand for boolean indexing based on index
values above or below certain thresholds.
Parameters
----------
before : date, str, int
Truncate all rows before this index value.
after : date, str, int
Truncate all rows after this index value.
axis : {0 or 'index', 1 or 'columns'}, optional
Axis to truncate. Truncates the index (rows) by default.
For `Series` this parameter is unused and defaults to 0.
copy : bool, default is True,
Return a copy of the truncated section.
Returns
-------
type of caller
The truncated Series or DataFrame.
See Also
--------
DataFrame.loc : Select a subset of a DataFrame by label.
DataFrame.iloc : Select a subset of a DataFrame by position.
Notes
-----
If the index being truncated contains only datetime values,
`before` and `after` may be specified as strings instead of
Timestamps.
Examples
--------
>>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
... 'B': ['f', 'g', 'h', 'i', 'j'],
... 'C': ['k', 'l', 'm', 'n', 'o']},
... index=[1, 2, 3, 4, 5])
>>> df
A B C
1 a f k
2 b g l
3 c h m
4 d i n
5 e j o
>>> df.truncate(before=2, after=4)
A B C
2 b g l
3 c h m
4 d i n
The columns of a DataFrame can be truncated.
>>> df.truncate(before="A", after="B", axis="columns")
A B
1 a f
2 b g
3 c h
4 d i
5 e j
For Series, only rows can be truncated.
>>> df['A'].truncate(before=2, after=4)
2 b
3 c
4 d
Name: A, dtype: object
The index values in ``truncate`` can be datetimes or string
dates.
>>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s')
>>> df = pd.DataFrame(index=dates, data={'A': 1})
>>> df.tail()
A
2016-01-31 23:59:56 1
2016-01-31 23:59:57 1
2016-01-31 23:59:58 1
2016-01-31 23:59:59 1
2016-02-01 00:00:00 1
>>> df.truncate(before=pd.Timestamp('2016-01-05'),
... after=pd.Timestamp('2016-01-10')).tail()
A
2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1
2016-01-09 23:59:59 1
2016-01-10 00:00:00 1
Because the index is a DatetimeIndex containing only dates, we can
specify `before` and `after` as strings. They will be coerced to
Timestamps before truncation.
>>> df.truncate('2016-01-05', '2016-01-10').tail()
A
2016-01-09 23:59:56 1
2016-01-09 23:59:57 1
2016-01-09 23:59:58 1
2016-01-09 23:59:59 1
2016-01-10 00:00:00 1
Note that ``truncate`` assumes a 0 value for any unspecified time
component (midnight). This differs from partial string slicing, which
returns any partially matching dates.
>>> df.loc['2016-01-05':'2016-01-10', :].tail()
A
2016-01-10 23:59:55 1
2016-01-10 23:59:56 1
2016-01-10 23:59:57 1
2016-01-10 23:59:58 1
2016-01-10 23:59:59 1
Convert tz-aware axis to target time zone.
Parameters
----------
tz : str or tzinfo object
axis : the axis to convert
level : int, str, default None
If axis is a MultiIndex, convert a specific level. Otherwise
must be None.
copy : bool, default True
Also make a copy of the underlying data.
Returns
-------
Series/DataFrame
Object with time zone converted axis.
Raises
------
TypeError
If the axis is tz-naive.
Localize tz-naive index of a Series or DataFrame to target time zone.
This operation localizes the Index. To localize the values in a
timezone-naive Series, use :meth:`Series.dt.tz_localize`.
Parameters
----------
tz : str or tzinfo
axis : the axis to localize
level : int, str, default None
If axis ia a MultiIndex, localize a specific level. Otherwise
must be None.
copy : bool, default True
Also make a copy of the underlying data.
ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
When clocks moved backward due to DST, ambiguous times may arise.
For example in Central European Time (UTC+01), when going from
03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at
00:30:00 UTC and at 01:30:00 UTC. In such a situation, the
`ambiguous` parameter dictates how ambiguous times should be
handled.
- 'infer' will attempt to infer fall dst-transition hours based on
order
- bool-ndarray where True signifies a DST time, False designates
a non-DST time (note that this flag is only applicable for
ambiguous times)
- 'NaT' will return NaT where there are ambiguous times
- 'raise' will raise an AmbiguousTimeError if there are ambiguous
times.
nonexistent : str, default 'raise'
A nonexistent time does not exist in a particular timezone
where clocks moved forward due to DST. Valid values are:
- 'shift_forward' will shift the nonexistent time forward to the
closest existing time
- 'shift_backward' will shift the nonexistent time backward to the
closest existing time
- 'NaT' will return NaT where there are nonexistent times
- timedelta objects will shift nonexistent times by the timedelta
- 'raise' will raise an NonExistentTimeError if there are
nonexistent times.
Returns
-------
Series/DataFrame
Same type as the input.
Raises
------
TypeError
If the TimeSeries is tz-aware and tz is not None.
Examples
--------
Localize local times:
>>> s = pd.Series([1],
... index=pd.DatetimeIndex(['2018-09-15 01:30:00']))
>>> s.tz_localize('CET')
2018-09-15 01:30:00+02:00 1
dtype: int64
Be careful with DST changes. When there is sequential data, pandas
can infer the DST time:
>>> s = pd.Series(range(7),
... index=pd.DatetimeIndex(['2018-10-28 01:30:00',
... '2018-10-28 02:00:00',
... '2018-10-28 02:30:00',
... '2018-10-28 02:00:00',
... '2018-10-28 02:30:00',
... '2018-10-28 03:00:00',
... '2018-10-28 03:30:00']))
>>> s.tz_localize('CET', ambiguous='infer')
2018-10-28 01:30:00+02:00 0
2018-10-28 02:00:00+02:00 1
2018-10-28 02:30:00+02:00 2
2018-10-28 02:00:00+01:00 3
2018-10-28 02:30:00+01:00 4
2018-10-28 03:00:00+01:00 5
2018-10-28 03:30:00+01:00 6
dtype: int64
In some cases, inferring the DST is impossible. In such cases, you can
pass an ndarray to the ambiguous parameter to set the DST explicitly
>>> s = pd.Series(range(3),
... index=pd.DatetimeIndex(['2018-10-28 01:20:00',
... '2018-10-28 02:36:00',
... '2018-10-28 03:46:00']))
>>> s.tz_localize('CET', ambiguous=np.array([True, True, False]))
2018-10-28 01:20:00+02:00 0
2018-10-28 02:36:00+02:00 1
2018-10-28 03:46:00+01:00 2
dtype: int64
If the DST transition causes nonexistent times, you can shift these
dates forward or backward with a timedelta object or `'shift_forward'`
or `'shift_backward'`.
>>> s = pd.Series(range(2),
... index=pd.DatetimeIndex(['2015-03-29 02:30:00',
... '2015-03-29 03:30:00']))
>>> s.tz_localize('Europe/Warsaw', nonexistent='shift_forward')
2015-03-29 03:00:00+02:00 0
2015-03-29 03:30:00+02:00 1
dtype: int64
>>> s.tz_localize('Europe/Warsaw', nonexistent='shift_backward')
2015-03-29 01:59:59.999999999+01:00 0
2015-03-29 03:30:00+02:00 1
dtype: int64
>>> s.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H'))
2015-03-29 03:30:00+02:00 0
2015-03-29 03:30:00+02:00 1
dtype: int64
Pivot a level of the (necessarily hierarchical) index labels.
Returns a DataFrame having a new level of column labels whose inner-most level
consists of the pivoted index labels.
If the index is not a MultiIndex, the output will be a Series
(the analogue of stack when the columns are not a MultiIndex).
Parameters
----------
level : int, str, or list of these, default -1 (last level)
Level(s) of index to unstack, can pass level name.
fill_value : int, str or dict
Replace NaN with this value if the unstack produces missing values.
Returns
-------
Series or DataFrame
See Also
--------
DataFrame.pivot : Pivot a table based on column values.
DataFrame.stack : Pivot a level of the column labels (inverse operation
from `unstack`).
Notes
-----
Reference :ref:`the user guide <reshaping.stacking>` for more examples.
Examples
--------
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
... ('two', 'a'), ('two', 'b')])
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
>>> s
one a 1.0
b 2.0
two a 3.0
b 4.0
dtype: float64
>>> s.unstack(level=-1)
a b
one 1.0 2.0
two 3.0 4.0
>>> s.unstack(level=0)
one two
a 1.0 3.0
b 2.0 4.0
>>> df = s.unstack(level=0)
>>> df.unstack()
one a 1.0
b 2.0
two a 3.0
b 4.0
dtype: float64
Modify in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
Parameters
----------
other : DataFrame, or object coercible into a DataFrame
Should have at least one matching index/column label
with the original DataFrame. If a Series is passed,
its name attribute must be set, and that will be
used as the column name to align with the original DataFrame.
join : {'left'}, default 'left'
Only left join is implemented, keeping the index and columns of the
original object.
overwrite : bool, default True
How to handle non-NA values for overlapping keys:
* True: overwrite original DataFrame's values
with values from `other`.
* False: only update values that are NA in
the original DataFrame.
filter_func : callable(1d-array) -> bool 1d-array, optional
Can choose to replace values other than NA. Return True for values
that should be updated.
errors : {'raise', 'ignore'}, default 'ignore'
If 'raise', will raise a ValueError if the DataFrame and `other`
both contain non-NA data in the same place.
Returns
-------
None : method directly changes calling object
Raises
------
ValueError
* When `errors='raise'` and there's overlapping non-NA data.
* When `errors` is not either `'ignore'` or `'raise'`
NotImplementedError
* If `join != 'left'`
See Also
--------
dict.update : Similar method for dictionaries.
DataFrame.merge : For column(s)-on-column(s) operations.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, 5, 6],
... 'C': [7, 8, 9]})
>>> df.update(new_df)
>>> df
A B
0 1 4
1 2 5
2 3 6
The DataFrame's length does not increase as a result of the update,
only values at matching index/column labels are updated.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
>>> df.update(new_df)
>>> df
A B
0 a d
1 b e
2 c f
For Series, its name attribute must be set.
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
>>> df.update(new_column)
>>> df
A B
0 a d
1 b y
2 c e
>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
>>> df.update(new_df)
>>> df
A B
0 a x
1 b d
2 c e
If `other` contains NaNs the corresponding values are not updated
in the original dataframe.
>>> df = pd.DataFrame({'A': [1, 2, 3],
... 'B': [400, 500, 600]})
>>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
>>> df.update(new_df)
>>> df
A B
0 1 4.0
1 2 500.0
2 3 6.0
Return a Series containing counts of unique rows in the DataFrame.
.. versionadded:: 1.1.0
Parameters
----------
subset : list-like, optional
Columns to use when counting unique combinations.
normalize : bool, default False
Return proportions rather than frequencies.
sort : bool, default True
Sort by frequencies.
ascending : bool, default False
Sort in ascending order.
dropna : bool, default True
Don’t include counts of rows that contain NA values.
.. versionadded:: 1.3.0
Returns
-------
Series
See Also
--------
Series.value_counts: Equivalent method on Series.
Notes
-----
The returned Series will have a MultiIndex with one level per input
column. By default, rows that contain any NA values are omitted from
the result. By default, the resulting Series will be in descending
order so that the first element is the most frequently-occurring row.
Examples
--------
>>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6],
... 'num_wings': [2, 0, 0, 0]},
... index=['falcon', 'dog', 'cat', 'ant'])
>>> df
num_legs num_wings
falcon 2 2
dog 4 0
cat 4 0
ant 6 0
>>> df.value_counts()
num_legs num_wings
4 0 2
2 2 1
6 0 1
dtype: int64
>>> df.value_counts(sort=False)
num_legs num_wings
2 2 1
4 0 2
6 0 1
dtype: int64
>>> df.value_counts(ascending=True)
num_legs num_wings
2 2 1
6 0 1
4 0 2
dtype: int64
>>> df.value_counts(normalize=True)
num_legs num_wings
4 0 0.50
2 2 0.25
6 0 0.25
dtype: float64
With `dropna` set to `False` we can also count rows with NA values.
>>> df = pd.DataFrame({'first_name': ['John', 'Anne', 'John', 'Beth'],
... 'middle_name': ['Smith', pd.NA, pd.NA, 'Louise']})
>>> df
first_name middle_name
0 John Smith
1 Anne <NA>
2 John <NA>
3 Beth Louise
>>> df.value_counts()
first_name middle_name
Beth Louise 1
John Smith 1
dtype: int64
>>> df.value_counts(dropna=False)
first_name middle_name
Anne NaN 1
Beth Louise 1
John Smith 1
NaN 1
dtype: int64
ndarray(shape, dtype=float, buffer=None, offset=0,
strides=None, order=None)
An array object represents a multidimensional, homogeneous array
of fixed-size items. An associated data-type object describes the
format of each element in the array (its byte-order, how many bytes it
occupies in memory, whether it is an integer, a floating point number,
or something else, etc.)
Arrays should be constructed using `array`, `zeros` or `empty` (refer
to the See Also section below). The parameters given here refer to
a low-level method (`ndarray(...)`) for instantiating an array.
For more information, refer to the `numpy` module and examine the
methods and attributes of an array.
Parameters
----------
(for the __new__ method; see Notes below)
shape : tuple of ints
Shape of created array.
dtype : data-type, optional
Any object that can be interpreted as a numpy data type.
buffer : object exposing buffer interface, optional
Used to fill the array with data.
offset : int, optional
Offset of array data in buffer.
strides : tuple of ints, optional
Strides of data in memory.
order : {'C', 'F'}, optional
Row-major (C-style) or column-major (Fortran-style) order.
Attributes
----------
T : ndarray
Transpose of the array.
data : buffer
The array's elements, in memory.
dtype : dtype object
Describes the format of the elements in the array.
flags : dict
Dictionary containing information related to memory use, e.g.,
'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
flat : numpy.flatiter object
Flattened version of the array as an iterator. The iterator
allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
assignment examples; TODO).
imag : ndarray
Imaginary part of the array.
real : ndarray
Real part of the array.
size : int
Number of elements in the array.
itemsize : int
The memory use of each array element in bytes.
nbytes : int
The total number of bytes required to store the array data,
i.e., ``itemsize * size``.
ndim : int
The array's number of dimensions.
shape : tuple of ints
Shape of the array.
strides : tuple of ints
The step-size required to move from one element to the next in
memory. For example, a contiguous ``(3, 4)`` array of type
``int16`` in C-order has strides ``(8, 2)``. This implies that
to move from element to element in memory requires jumps of 2 bytes.
To move from row-to-row, one needs to jump 8 bytes at a time
(``2 * 4``).
ctypes : ctypes object
Class containing properties of the array needed for interaction
with ctypes.
base : ndarray
If the array is a view into another array, that array is its `base`
(unless that array is also a view). The `base` array is where the
array data is actually stored.
See Also
--------
array : Construct an array.
zeros : Create an array, each element of which is zero.
empty : Create an array, but leave its allocated memory unchanged (i.e.,
it contains "garbage").
dtype : Create a data-type.
numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>`
w.r.t. its `dtype.type <numpy.dtype.type>`.
Notes
-----
There are two modes of creating an array using ``__new__``:
1. If `buffer` is None, then only `shape`, `dtype`, and `order`
are used.
2. If `buffer` is an object exposing the buffer interface, then
all keywords are interpreted.
No ``__init__`` method is needed because the array is fully initialized
after the ``__new__`` method.
Examples
--------
These examples illustrate the low-level `ndarray` constructor. Refer
to the `See Also` section above for easier ways of constructing an
ndarray.
First mode, `buffer` is None:
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random
[ nan, 2.5e-323]])
Second mode:
>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument.
Parameters
----------
axis : {index (0), columns (1)}
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a
particular level, collapsing into a Series.
.. deprecated:: 1.3.0
The level keyword is deprecated. Use groupby instead.
ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements.
numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data. Not implemented for Series.
.. deprecated:: 1.5.0
Specifying ``numeric_only=None`` is deprecated. The default value will be
``False`` in a future version of pandas.
Returns
-------
Series or DataFrame (if level specified)
Examples
--------
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3],
... 'age': [21, 25, 62, 43],
... 'height': [1.61, 1.87, 1.49, 2.01]}
... ).set_index('person_id')
>>> df
age height
person_id
0 21 1.61
1 25 1.87
2 62 1.49
3 43 2.01
>>> df.var()
age 352.916667
height 0.056367
Alternatively, ``ddof=0`` can be set to normalize by N instead of N-1:
>>> df.var(ddof=0)
age 264.687500
height 0.042275
None
Return cross-section from the Series/DataFrame.
This method takes a `key` argument to select data at a particular
level of a MultiIndex.
Parameters
----------
key : label or tuple of label
Label contained in the index, or partially in a MultiIndex.
axis : {0 or 'index', 1 or 'columns'}, default 0
Axis to retrieve cross-section on.
level : object, defaults to first n levels (n=1 or len(key))
In case of a key partially contained in a MultiIndex, indicate
which levels are used. Levels can be referred by label or position.
drop_level : bool, default True
If False, returns object with same levels as self.
Returns
-------
Series or DataFrame
Cross-section from the original Series or DataFrame
corresponding to the selected index levels.
See Also
--------
DataFrame.loc : Access a group of rows and columns
by label(s) or a boolean array.
DataFrame.iloc : Purely integer-location based indexing
for selection by position.
Notes
-----
`xs` can not be used to set values.
MultiIndex Slicers is a generic way to get/set values on
any level or levels.
It is a superset of `xs` functionality, see
:ref:`MultiIndex Slicers <advanced.mi_slicers>`.
Examples
--------
>>> d = {'num_legs': [4, 4, 2, 2],
... 'num_wings': [0, 0, 2, 2],
... 'class': ['mammal', 'mammal', 'mammal', 'bird'],
... 'animal': ['cat', 'dog', 'bat', 'penguin'],
... 'locomotion': ['walks', 'walks', 'flies', 'walks']}
>>> df = pd.DataFrame(data=d)
>>> df = df.set_index(['class', 'animal', 'locomotion'])
>>> df
num_legs num_wings
class animal locomotion
mammal cat walks 4 0
dog walks 4 0
bat flies 2 2
bird penguin walks 2 2
Get values at specified index
>>> df.xs('mammal')
num_legs num_wings
animal locomotion
cat walks 4 0
dog walks 4 0
bat flies 2 2
Get values at several indexes
>>> df.xs(('mammal', 'dog'))
num_legs num_wings
locomotion
walks 4 0
Get values at specified index and level
>>> df.xs('cat', level=1)
num_legs num_wings
class locomotion
mammal walks 4 0
Get values at several indexes and levels
>>> df.xs(('bird', 'walks'),
... level=[0, 'locomotion'])
num_legs num_wings
animal
penguin 2 2
Get values at specified column and axis
>>> df.xs('num_wings', axis=1)
class animal locomotion
mammal cat walks 0
dog walks 0
bat flies 2
bird penguin walks 2
Name: num_wings, dtype: int64