Extract Docstrings for all fuctions of an object.

First construct an object of any type, execute this notebook, then convert to html for easy viewing.
jupyter nbconvert --to html --no-input --execute notebook.ipynb

R WU
Dec 2023

pandas.core.frame.DataFrame
T: T
a: abs add add_prefix add_suffix agg aggregate align all any append apply applymap asfreq asof assign astype at at_time attrs axes
b: backfill between_time bfill bool boxplot
c: clip columns combine combine_first compare convert_dtypes copy corr corrwith count cov cummax cummin cumprod cumsum
d: describe diff div divide dot drop drop_duplicates droplevel dropna dtypes duplicated
e: empty eq equals eval ewm expanding explode
f: ffill fillna filter first first_valid_index flags floordiv from_dict from_records
g: ge get groupby gt
h: head hist
i: iat idxmax idxmin iloc index infer_objects info insert interpolate isetitem isin isna isnull items iteritems iterrows itertuples
j: join
k: keys kurt kurtosis
l: last last_valid_index le loc lookup lt
m: mad mask max mean median melt memory_usage merge min mod mode mul multiply
n: ndim ne nlargest notna notnull nsmallest nunique
p: pad pct_change pipe pivot pivot_table plot pop pow prod product
q: quantile query
r: radd rank rdiv reindex reindex_like rename rename_axis reorder_levels replace resample reset_index rfloordiv rmod rmul rolling round rpow rsub rtruediv
s: sample select_dtypes sem set_axis set_flags set_index shape shift size skew slice_shift sort_index sort_values sparse squeeze stack std style sub subtract sum swapaxes swaplevel
t: tail take to_clipboard to_csv to_dict to_excel to_feather to_gbq to_hdf to_html to_json to_latex to_markdown to_numpy to_orc to_parquet to_period to_pickle to_records to_sql to_stata to_string to_timestamp to_xarray to_xml transform transpose truediv truncate tz_convert tz_localize
u: unstack update
v: value_counts values var
w: where
x: xs
0. T
    Two-dimensional, size-mutable, potentially heterogeneous tabular data.

    Data structure also contains labeled axes (rows and columns).
    Arithmetic operations align on both row and column labels. Can be
    thought of as a dict-like container for Series objects. The primary
    pandas data structure.

    Parameters
    ----------
    data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame
        Dict can contain Series, arrays, constants, dataclass or list-like objects. If
        data is a dict, column order follows insertion-order. If a dict contains Series
        which have an index defined, it is aligned by its index.

        .. versionchanged:: 0.25.0
           If data is a list of dicts, column order follows insertion-order.

    index : Index or array-like
        Index to use for resulting frame. Will default to RangeIndex if
        no indexing information part of input data and no index provided.
    columns : Index or array-like
        Column labels to use for resulting frame when data does not have them,
        defaulting to RangeIndex(0, 1, 2, ..., n). If data contains column labels,
        will perform column selection instead.
    dtype : dtype, default None
        Data type to force. Only a single dtype is allowed. If None, infer.
    copy : bool or None, default None
        Copy data from inputs.
        For dict data, the default of None behaves like ``copy=True``.  For DataFrame
        or 2d ndarray input, the default of None behaves like ``copy=False``.
        If data is a dict containing one or more Series (possibly of different dtypes),
        ``copy=False`` will ensure that these inputs are not copied.

        .. versionchanged:: 1.3.0

    See Also
    --------
    DataFrame.from_records : Constructor from tuples, also record arrays.
    DataFrame.from_dict : From dicts of Series, arrays, or dicts.
    read_csv : Read a comma-separated values (csv) file into DataFrame.
    read_table : Read general delimited file into DataFrame.
    read_clipboard : Read text from clipboard into DataFrame.

    Notes
    -----
    Please reference the :ref:`User Guide <basics.dataframe>` for more information.

    Examples
    --------
    Constructing DataFrame from a dictionary.

    >>> d = {'col1': [1, 2], 'col2': [3, 4]}
    >>> df = pd.DataFrame(data=d)
    >>> df
       col1  col2
    0     1     3
    1     2     4

    Notice that the inferred dtype is int64.

    >>> df.dtypes
    col1    int64
    col2    int64
    dtype: object

    To enforce a single dtype:

    >>> df = pd.DataFrame(data=d, dtype=np.int8)
    >>> df.dtypes
    col1    int8
    col2    int8
    dtype: object

    Constructing DataFrame from a dictionary including Series:

    >>> d = {'col1': [0, 1, 2, 3], 'col2': pd.Series([2, 3], index=[2, 3])}
    >>> pd.DataFrame(data=d, index=[0, 1, 2, 3])
       col1  col2
    0     0   NaN
    1     1   NaN
    2     2   2.0
    3     3   3.0

    Constructing DataFrame from numpy ndarray:

    >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
    ...                    columns=['a', 'b', 'c'])
    >>> df2
       a  b  c
    0  1  2  3
    1  4  5  6
    2  7  8  9

    Constructing DataFrame from a numpy ndarray that has labeled columns:

    >>> data = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)],
    ...                 dtype=[("a", "i4"), ("b", "i4"), ("c", "i4")])
    >>> df3 = pd.DataFrame(data, columns=['c', 'a'])
    ...
    >>> df3
       c  a
    0  3  1
    1  6  4
    2  9  7

    Constructing DataFrame from dataclass:

    >>> from dataclasses import make_dataclass
    >>> Point = make_dataclass("Point", [("x", int), ("y", int)])
    >>> pd.DataFrame([Point(0, 0), Point(0, 3), Point(2, 3)])
       x  y
    0  0  0
    1  0  3
    2  2  3
    

1. abs
        Return a Series/DataFrame with absolute numeric value of each element.

        This function only applies to elements that are all numeric.

        Returns
        -------
        abs
            Series/DataFrame containing the absolute value of each element.

        See Also
        --------
        numpy.absolute : Calculate the absolute value element-wise.

        Notes
        -----
        For ``complex`` inputs, ``1.2 + 1j``, the absolute value is
        :math:`\sqrt{ a^2 + b^2 }`.

        Examples
        --------
        Absolute numeric values in a Series.

        >>> s = pd.Series([-1.10, 2, -3.33, 4])
        >>> s.abs()
        0    1.10
        1    2.00
        2    3.33
        3    4.00
        dtype: float64

        Absolute numeric values in a Series with complex numbers.

        >>> s = pd.Series([1.2 + 1j])
        >>> s.abs()
        0    1.56205
        dtype: float64

        Absolute numeric values in a Series with a Timedelta element.

        >>> s = pd.Series([pd.Timedelta('1 days')])
        >>> s.abs()
        0   1 days
        dtype: timedelta64[ns]

        Select rows with data closest to certain value using argsort (from
        `StackOverflow <https://stackoverflow.com/a/17758115>`__).

        >>> df = pd.DataFrame({
        ...     'a': [4, 5, 6, 7],
        ...     'b': [10, 20, 30, 40],
        ...     'c': [100, 50, -30, -50]
        ... })
        >>> df
             a    b    c
        0    4   10  100
        1    5   20   50
        2    6   30  -30
        3    7   40  -50
        >>> df.loc[(df.c - 43).abs().argsort()]
             a    b    c
        1    5   20   50
        0    4   10  100
        2    6   30  -30
        3    7   40  -50
        

2. add
Get Addition of dataframe and other, element-wise (binary operator `add`).

Equivalent to ``dataframe + other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `radd`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


3. add_prefix
        Prefix labels with string `prefix`.

        For Series, the row labels are prefixed.
        For DataFrame, the column labels are prefixed.

        Parameters
        ----------
        prefix : str
            The string to add before each label.

        Returns
        -------
        Series or DataFrame
            New Series or DataFrame with updated labels.

        See Also
        --------
        Series.add_suffix: Suffix row labels with string `suffix`.
        DataFrame.add_suffix: Suffix column labels with string `suffix`.

        Examples
        --------
        >>> s = pd.Series([1, 2, 3, 4])
        >>> s
        0    1
        1    2
        2    3
        3    4
        dtype: int64

        >>> s.add_prefix('item_')
        item_0    1
        item_1    2
        item_2    3
        item_3    4
        dtype: int64

        >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
        >>> df
           A  B
        0  1  3
        1  2  4
        2  3  5
        3  4  6

        >>> df.add_prefix('col_')
             col_A  col_B
        0       1       3
        1       2       4
        2       3       5
        3       4       6
        

4. add_suffix
        Suffix labels with string `suffix`.

        For Series, the row labels are suffixed.
        For DataFrame, the column labels are suffixed.

        Parameters
        ----------
        suffix : str
            The string to add after each label.

        Returns
        -------
        Series or DataFrame
            New Series or DataFrame with updated labels.

        See Also
        --------
        Series.add_prefix: Prefix row labels with string `prefix`.
        DataFrame.add_prefix: Prefix column labels with string `prefix`.

        Examples
        --------
        >>> s = pd.Series([1, 2, 3, 4])
        >>> s
        0    1
        1    2
        2    3
        3    4
        dtype: int64

        >>> s.add_suffix('_item')
        0_item    1
        1_item    2
        2_item    3
        3_item    4
        dtype: int64

        >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
        >>> df
           A  B
        0  1  3
        1  2  4
        2  3  5
        3  4  6

        >>> df.add_suffix('_col')
             A_col  B_col
        0       1       3
        1       2       4
        2       3       5
        3       4       6
        

5. agg
Aggregate using one or more operations over the specified axis.

Parameters
----------
func : function, str, list or dict
    Function to use for aggregating the data. If a function, must either
    work when passed a DataFrame or when passed to DataFrame.apply.

    Accepted combinations are:

    - function
    - string function name
    - list of functions and/or function names, e.g. ``[np.sum, 'mean']``
    - dict of axis labels -> functions, function names or list of such.
axis : {0 or 'index', 1 or 'columns'}, default 0
        If 0 or 'index': apply function to each column.
        If 1 or 'columns': apply function to each row.
*args
    Positional arguments to pass to `func`.
**kwargs
    Keyword arguments to pass to `func`.

Returns
-------
scalar, Series or DataFrame

    The return can be:

    * scalar : when Series.agg is called with single function
    * Series : when DataFrame.agg is called with a single function
    * DataFrame : when DataFrame.agg is called with several functions

    Return scalar, Series or DataFrame.

The aggregation operations are always performed over an axis, either the
index (default) or the column axis. This behavior is different from
`numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,
`var`), where the default is to compute the aggregation of the flattened
array, e.g., ``numpy.mean(arr_2d)`` as opposed to
``numpy.mean(arr_2d, axis=0)``.

`agg` is an alias for `aggregate`. Use the alias.

See Also
--------
DataFrame.apply : Perform any type of operations.
DataFrame.transform : Perform transformation type operations.
core.groupby.GroupBy : Perform operations over groups.
core.resample.Resampler : Perform operations over resampled bins.
core.window.Rolling : Perform operations over rolling window.
core.window.Expanding : Perform operations over expanding window.
core.window.ExponentialMovingWindow : Perform operation over exponential weighted
    window.

Notes
-----
`agg` is an alias for `aggregate`. Use the alias.

Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.

A passed user-defined-function will be passed a Series for evaluation.

Examples
--------
>>> df = pd.DataFrame([[1, 2, 3],
...                    [4, 5, 6],
...                    [7, 8, 9],
...                    [np.nan, np.nan, np.nan]],
...                   columns=['A', 'B', 'C'])

Aggregate these functions over the rows.

>>> df.agg(['sum', 'min'])
        A     B     C
sum  12.0  15.0  18.0
min   1.0   2.0   3.0

Different aggregations per column.

>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
        A    B
sum  12.0  NaN
min   1.0  2.0
max   NaN  8.0

Aggregate different functions over the columns and rename the index of the resulting
DataFrame.

>>> df.agg(x=('A', max), y=('B', 'min'), z=('C', np.mean))
     A    B    C
x  7.0  NaN  NaN
y  NaN  2.0  NaN
z  NaN  NaN  6.0

Aggregate over the columns.

>>> df.agg("mean", axis="columns")
0    2.0
1    5.0
2    8.0
3    NaN
dtype: float64


6. aggregate
Aggregate using one or more operations over the specified axis.

Parameters
----------
func : function, str, list or dict
    Function to use for aggregating the data. If a function, must either
    work when passed a DataFrame or when passed to DataFrame.apply.

    Accepted combinations are:

    - function
    - string function name
    - list of functions and/or function names, e.g. ``[np.sum, 'mean']``
    - dict of axis labels -> functions, function names or list of such.
axis : {0 or 'index', 1 or 'columns'}, default 0
        If 0 or 'index': apply function to each column.
        If 1 or 'columns': apply function to each row.
*args
    Positional arguments to pass to `func`.
**kwargs
    Keyword arguments to pass to `func`.

Returns
-------
scalar, Series or DataFrame

    The return can be:

    * scalar : when Series.agg is called with single function
    * Series : when DataFrame.agg is called with a single function
    * DataFrame : when DataFrame.agg is called with several functions

    Return scalar, Series or DataFrame.

The aggregation operations are always performed over an axis, either the
index (default) or the column axis. This behavior is different from
`numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,
`var`), where the default is to compute the aggregation of the flattened
array, e.g., ``numpy.mean(arr_2d)`` as opposed to
``numpy.mean(arr_2d, axis=0)``.

`agg` is an alias for `aggregate`. Use the alias.

See Also
--------
DataFrame.apply : Perform any type of operations.
DataFrame.transform : Perform transformation type operations.
core.groupby.GroupBy : Perform operations over groups.
core.resample.Resampler : Perform operations over resampled bins.
core.window.Rolling : Perform operations over rolling window.
core.window.Expanding : Perform operations over expanding window.
core.window.ExponentialMovingWindow : Perform operation over exponential weighted
    window.

Notes
-----
`agg` is an alias for `aggregate`. Use the alias.

Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.

A passed user-defined-function will be passed a Series for evaluation.

Examples
--------
>>> df = pd.DataFrame([[1, 2, 3],
...                    [4, 5, 6],
...                    [7, 8, 9],
...                    [np.nan, np.nan, np.nan]],
...                   columns=['A', 'B', 'C'])

Aggregate these functions over the rows.

>>> df.agg(['sum', 'min'])
        A     B     C
sum  12.0  15.0  18.0
min   1.0   2.0   3.0

Different aggregations per column.

>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
        A    B
sum  12.0  NaN
min   1.0  2.0
max   NaN  8.0

Aggregate different functions over the columns and rename the index of the resulting
DataFrame.

>>> df.agg(x=('A', max), y=('B', 'min'), z=('C', np.mean))
     A    B    C
x  7.0  NaN  NaN
y  NaN  2.0  NaN
z  NaN  NaN  6.0

Aggregate over the columns.

>>> df.agg("mean", axis="columns")
0    2.0
1    5.0
2    8.0
3    NaN
dtype: float64


7. align
Align two objects on their axes with the specified join method.

Join method is specified for each axis Index.

Parameters
----------
other : DataFrame or Series
join : {'outer', 'inner', 'left', 'right'}, default 'outer'
axis : allowed axis of the other object, default None
    Align on index (0), columns (1), or both (None).
level : int or level name, default None
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
copy : bool, default True
    Always returns new objects. If copy=False and no reindexing is
    required then original objects are returned.
fill_value : scalar, default np.NaN
    Value to use for missing values. Defaults to NaN, but can be any
    "compatible" value.
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
    Method to use for filling holes in reindexed Series:

    - pad / ffill: propagate last valid observation forward to next valid.
    - backfill / bfill: use NEXT valid observation to fill gap.

limit : int, default None
    If method is specified, this is the maximum number of consecutive
    NaN values to forward/backward fill. In other words, if there is
    a gap with more than this number of consecutive NaNs, it will only
    be partially filled. If method is not specified, this is the
    maximum number of entries along the entire axis where NaNs will be
    filled. Must be greater than 0 if not None.
fill_axis : {0 or 'index', 1 or 'columns'}, default 0
    Filling axis, method and limit.
broadcast_axis : {0 or 'index', 1 or 'columns'}, default None
    Broadcast values along this axis, if aligning two objects of
    different dimensions.

Returns
-------
(left, right) : (DataFrame, type of other)
    Aligned objects.

Examples
--------
>>> df = pd.DataFrame(
...     [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2]
... )
>>> other = pd.DataFrame(
...     [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]],
...     columns=["A", "B", "C", "D"],
...     index=[2, 3, 4],
... )
>>> df
   D  B  E  A
1  1  2  3  4
2  6  7  8  9
>>> other
    A    B    C    D
2   10   20   30   40
3   60   70   80   90
4  600  700  800  900

Align on columns:

>>> left, right = df.align(other, join="outer", axis=1)
>>> left
   A  B   C  D  E
1  4  2 NaN  1  3
2  9  7 NaN  6  8
>>> right
    A    B    C    D   E
2   10   20   30   40 NaN
3   60   70   80   90 NaN
4  600  700  800  900 NaN

We can also align on the index:

>>> left, right = df.align(other, join="outer", axis=0)
>>> left
    D    B    E    A
1  1.0  2.0  3.0  4.0
2  6.0  7.0  8.0  9.0
3  NaN  NaN  NaN  NaN
4  NaN  NaN  NaN  NaN
>>> right
    A      B      C      D
1    NaN    NaN    NaN    NaN
2   10.0   20.0   30.0   40.0
3   60.0   70.0   80.0   90.0
4  600.0  700.0  800.0  900.0

Finally, the default `axis=None` will align on both index and columns:

>>> left, right = df.align(other, join="outer", axis=None)
>>> left
     A    B   C    D    E
1  4.0  2.0 NaN  1.0  3.0
2  9.0  7.0 NaN  6.0  8.0
3  NaN  NaN NaN  NaN  NaN
4  NaN  NaN NaN  NaN  NaN
>>> right
       A      B      C      D   E
1    NaN    NaN    NaN    NaN NaN
2   10.0   20.0   30.0   40.0 NaN
3   60.0   70.0   80.0   90.0 NaN
4  600.0  700.0  800.0  900.0 NaN


8. all
Return whether all elements are True, potentially over an axis.

Returns True unless there at least one element within a series or
along a Dataframe axis that is False or equivalent (e.g. zero or
empty).

Parameters
----------
axis : {0 or 'index', 1 or 'columns', None}, default 0
    Indicate which axis or axes should be reduced. For `Series` this parameter
    is unused and defaults to 0.

    * 0 / 'index' : reduce the index, return a Series whose index is the
      original column labels.
    * 1 / 'columns' : reduce the columns, return a Series whose index is the
      original index.
    * None : reduce all axes, return a scalar.

bool_only : bool, default None
    Include only boolean columns. If None, will attempt to use everything,
    then use only boolean data. Not implemented for Series.
skipna : bool, default True
    Exclude NA/null values. If the entire row/column is NA and skipna is
    True, then the result will be True, as for an empty row/column.
    If skipna is False, then NA are treated as True, because these are not
    equal to zero.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
**kwargs : any, default None
    Additional keywords have no effect but might be accepted for
    compatibility with NumPy.

Returns
-------
Series or DataFrame
    If level is specified, then, DataFrame is returned; otherwise, Series
    is returned.

See Also
--------
Series.all : Return True if all elements are True.
DataFrame.any : Return True if one (or more) elements are True.

Examples
--------
**Series**

>>> pd.Series([True, True]).all()
True
>>> pd.Series([True, False]).all()
False
>>> pd.Series([], dtype="float64").all()
True
>>> pd.Series([np.nan]).all()
True
>>> pd.Series([np.nan]).all(skipna=False)
True

**DataFrames**

Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df
   col1   col2
0  True   True
1  True  False

Default behaviour checks if values in each column all return True.

>>> df.all()
col1     True
col2    False
dtype: bool

Specify ``axis='columns'`` to check if values in each row all return True.

>>> df.all(axis='columns')
0     True
1    False
dtype: bool

Or ``axis=None`` for whether every value is True.

>>> df.all(axis=None)
False


9. any
Return whether any element is True, potentially over an axis.

Returns False unless there is at least one element within a series or
along a Dataframe axis that is True or equivalent (e.g. non-zero or
non-empty).

Parameters
----------
axis : {0 or 'index', 1 or 'columns', None}, default 0
    Indicate which axis or axes should be reduced. For `Series` this parameter
    is unused and defaults to 0.

    * 0 / 'index' : reduce the index, return a Series whose index is the
      original column labels.
    * 1 / 'columns' : reduce the columns, return a Series whose index is the
      original index.
    * None : reduce all axes, return a scalar.

bool_only : bool, default None
    Include only boolean columns. If None, will attempt to use everything,
    then use only boolean data. Not implemented for Series.
skipna : bool, default True
    Exclude NA/null values. If the entire row/column is NA and skipna is
    True, then the result will be False, as for an empty row/column.
    If skipna is False, then NA are treated as True, because these are not
    equal to zero.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
**kwargs : any, default None
    Additional keywords have no effect but might be accepted for
    compatibility with NumPy.

Returns
-------
Series or DataFrame
    If level is specified, then, DataFrame is returned; otherwise, Series
    is returned.

See Also
--------
numpy.any : Numpy version of this method.
Series.any : Return whether any element is True.
Series.all : Return whether all elements are True.
DataFrame.any : Return whether any element is True over requested axis.
DataFrame.all : Return whether all elements are True over requested axis.

Examples
--------
**Series**

For Series input, the output is a scalar indicating whether any element
is True.

>>> pd.Series([False, False]).any()
False
>>> pd.Series([True, False]).any()
True
>>> pd.Series([], dtype="float64").any()
False
>>> pd.Series([np.nan]).any()
False
>>> pd.Series([np.nan]).any(skipna=False)
True

**DataFrame**

Whether each column contains at least one True element (the default).

>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]})
>>> df
   A  B  C
0  1  0  0
1  2  2  0

>>> df.any()
A     True
B     True
C    False
dtype: bool

Aggregating over the columns.

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]})
>>> df
       A  B
0   True  1
1  False  2

>>> df.any(axis='columns')
0    True
1    True
dtype: bool

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]})
>>> df
       A  B
0   True  1
1  False  0

>>> df.any(axis='columns')
0    True
1    False
dtype: bool

Aggregating over the entire DataFrame with ``axis=None``.

>>> df.any(axis=None)
True

`any` for an empty DataFrame is an empty Series.

>>> pd.DataFrame([]).any()
Series([], dtype: bool)


10. append
        Append rows of `other` to the end of caller, returning a new object.

        .. deprecated:: 1.4.0
            Use :func:`concat` instead. For further details see
            :ref:`whatsnew_140.deprecations.frame_series_append`

        Columns in `other` that are not in the caller are added as new columns.

        Parameters
        ----------
        other : DataFrame or Series/dict-like object, or list of these
            The data to append.
        ignore_index : bool, default False
            If True, the resulting axis will be labeled 0, 1, …, n - 1.
        verify_integrity : bool, default False
            If True, raise ValueError on creating index with duplicates.
        sort : bool, default False
            Sort columns if the columns of `self` and `other` are not aligned.

            .. versionchanged:: 1.0.0

                Changed to not sort by default.

        Returns
        -------
        DataFrame
            A new DataFrame consisting of the rows of caller and the rows of `other`.

        See Also
        --------
        concat : General function to concatenate DataFrame or Series objects.

        Notes
        -----
        If a list of dict/series is passed and the keys are all contained in
        the DataFrame's index, the order of the columns in the resulting
        DataFrame will be unchanged.

        Iteratively appending rows to a DataFrame can be more computationally
        intensive than a single concatenate. A better solution is to append
        those rows to a list and then concatenate the list with the original
        DataFrame all at once.

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'), index=['x', 'y'])
        >>> df
           A  B
        x  1  2
        y  3  4
        >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'), index=['x', 'y'])
        >>> df.append(df2)
           A  B
        x  1  2
        y  3  4
        x  5  6
        y  7  8

        With `ignore_index` set to True:

        >>> df.append(df2, ignore_index=True)
           A  B
        0  1  2
        1  3  4
        2  5  6
        3  7  8

        The following, while not recommended methods for generating DataFrames,
        show two ways to generate a DataFrame from multiple data sources.

        Less efficient:

        >>> df = pd.DataFrame(columns=['A'])
        >>> for i in range(5):
        ...     df = df.append({'A': i}, ignore_index=True)
        >>> df
           A
        0  0
        1  1
        2  2
        3  3
        4  4

        More efficient:

        >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
        ...           ignore_index=True)
           A
        0  0
        1  1
        2  2
        3  3
        4  4
        

11. apply
        Apply a function along an axis of the DataFrame.

        Objects passed to the function are Series objects whose index is
        either the DataFrame's index (``axis=0``) or the DataFrame's columns
        (``axis=1``). By default (``result_type=None``), the final return type
        is inferred from the return type of the applied function. Otherwise,
        it depends on the `result_type` argument.

        Parameters
        ----------
        func : function
            Function to apply to each column or row.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Axis along which the function is applied:

            * 0 or 'index': apply function to each column.
            * 1 or 'columns': apply function to each row.

        raw : bool, default False
            Determines if row or column is passed as a Series or ndarray object:

            * ``False`` : passes each row or column as a Series to the
              function.
            * ``True`` : the passed function will receive ndarray objects
              instead.
              If you are just applying a NumPy reduction function this will
              achieve much better performance.

        result_type : {'expand', 'reduce', 'broadcast', None}, default None
            These only act when ``axis=1`` (columns):

            * 'expand' : list-like results will be turned into columns.
            * 'reduce' : returns a Series if possible rather than expanding
              list-like results. This is the opposite of 'expand'.
            * 'broadcast' : results will be broadcast to the original shape
              of the DataFrame, the original index and columns will be
              retained.

            The default behaviour (None) depends on the return value of the
            applied function: list-like results will be returned as a Series
            of those. However if the apply function returns a Series these
            are expanded to columns.
        args : tuple
            Positional arguments to pass to `func` in addition to the
            array/series.
        **kwargs
            Additional keyword arguments to pass as keywords arguments to
            `func`.

        Returns
        -------
        Series or DataFrame
            Result of applying ``func`` along the given axis of the
            DataFrame.

        See Also
        --------
        DataFrame.applymap: For elementwise operations.
        DataFrame.aggregate: Only perform aggregating type operations.
        DataFrame.transform: Only perform transforming type operations.

        Notes
        -----
        Functions that mutate the passed object can produce unexpected
        behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
        for more details.

        Examples
        --------
        >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
        >>> df
           A  B
        0  4  9
        1  4  9
        2  4  9

        Using a numpy universal function (in this case the same as
        ``np.sqrt(df)``):

        >>> df.apply(np.sqrt)
             A    B
        0  2.0  3.0
        1  2.0  3.0
        2  2.0  3.0

        Using a reducing function on either axis

        >>> df.apply(np.sum, axis=0)
        A    12
        B    27
        dtype: int64

        >>> df.apply(np.sum, axis=1)
        0    13
        1    13
        2    13
        dtype: int64

        Returning a list-like will result in a Series

        >>> df.apply(lambda x: [1, 2], axis=1)
        0    [1, 2]
        1    [1, 2]
        2    [1, 2]
        dtype: object

        Passing ``result_type='expand'`` will expand list-like results
        to columns of a Dataframe

        >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand')
           0  1
        0  1  2
        1  1  2
        2  1  2

        Returning a Series inside the function is similar to passing
        ``result_type='expand'``. The resulting column names
        will be the Series index.

        >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
           foo  bar
        0    1    2
        1    1    2
        2    1    2

        Passing ``result_type='broadcast'`` will ensure the same shape
        result, whether list-like or scalar is returned by the function,
        and broadcast it along the axis. The resulting column names will
        be the originals.

        >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
           A  B
        0  1  2
        1  1  2
        2  1  2
        

12. applymap
        Apply a function to a Dataframe elementwise.

        This method applies a function that accepts and returns a scalar
        to every element of a DataFrame.

        Parameters
        ----------
        func : callable
            Python function, returns a single value from a single value.
        na_action : {None, 'ignore'}, default None
            If ‘ignore’, propagate NaN values, without passing them to func.

            .. versionadded:: 1.2

        **kwargs
            Additional keyword arguments to pass as keywords arguments to
            `func`.

            .. versionadded:: 1.3.0

        Returns
        -------
        DataFrame
            Transformed DataFrame.

        See Also
        --------
        DataFrame.apply : Apply a function along input axis of DataFrame.

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
        >>> df
               0      1
        0  1.000  2.120
        1  3.356  4.567

        >>> df.applymap(lambda x: len(str(x)))
           0  1
        0  3  4
        1  5  5

        Like Series.map, NA values can be ignored:

        >>> df_copy = df.copy()
        >>> df_copy.iloc[0, 0] = pd.NA
        >>> df_copy.applymap(lambda x: len(str(x)), na_action='ignore')
             0  1
        0  NaN  4
        1  5.0  5

        Note that a vectorized version of `func` often exists, which will
        be much faster. You could square each number elementwise.

        >>> df.applymap(lambda x: x**2)
                   0          1
        0   1.000000   4.494400
        1  11.262736  20.857489

        But it's better to avoid applymap in that case.

        >>> df ** 2
                   0          1
        0   1.000000   4.494400
        1  11.262736  20.857489
        

13. asfreq
Convert time series to specified frequency.

Returns the original data conformed to a new index with the specified
frequency.

If the index of this DataFrame is a :class:`~pandas.PeriodIndex`, the new index
is the result of transforming the original index with
:meth:`PeriodIndex.asfreq <pandas.PeriodIndex.asfreq>` (so the original index
will map one-to-one to the new index).

Otherwise, the new index will be equivalent to ``pd.date_range(start, end,
freq=freq)`` where ``start`` and ``end`` are, respectively, the first and
last entries in the original index (see :func:`pandas.date_range`). The
values corresponding to any timesteps in the new index which were not present
in the original index will be null (``NaN``), unless a method for filling
such unknowns is provided (see the ``method`` parameter below).

The :meth:`resample` method is more appropriate if an operation on each group of
timesteps (such as an aggregate) is necessary to represent the data at the new
frequency.

Parameters
----------
freq : DateOffset or str
    Frequency DateOffset or string.
method : {'backfill'/'bfill', 'pad'/'ffill'}, default None
    Method to use for filling holes in reindexed Series (note this
    does not fill NaNs that already were present):

    * 'pad' / 'ffill': propagate last valid observation forward to next
      valid
    * 'backfill' / 'bfill': use NEXT valid observation to fill.
how : {'start', 'end'}, default end
    For PeriodIndex only (see PeriodIndex.asfreq).
normalize : bool, default False
    Whether to reset output index to midnight.
fill_value : scalar, optional
    Value to use for missing values, applied during upsampling (note
    this does not fill NaNs that already were present).

Returns
-------
DataFrame
    DataFrame object reindexed to the specified frequency.

See Also
--------
reindex : Conform DataFrame to new index with optional filling logic.

Notes
-----
To learn more about the frequency strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

Examples
--------
Start by creating a series with 4 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=4, freq='T')
>>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
>>> df = pd.DataFrame({'s': series})
>>> df
                       s
2000-01-01 00:00:00    0.0
2000-01-01 00:01:00    NaN
2000-01-01 00:02:00    2.0
2000-01-01 00:03:00    3.0

Upsample the series into 30 second bins.

>>> df.asfreq(freq='30S')
                       s
2000-01-01 00:00:00    0.0
2000-01-01 00:00:30    NaN
2000-01-01 00:01:00    NaN
2000-01-01 00:01:30    NaN
2000-01-01 00:02:00    2.0
2000-01-01 00:02:30    NaN
2000-01-01 00:03:00    3.0

Upsample again, providing a ``fill value``.

>>> df.asfreq(freq='30S', fill_value=9.0)
                       s
2000-01-01 00:00:00    0.0
2000-01-01 00:00:30    9.0
2000-01-01 00:01:00    NaN
2000-01-01 00:01:30    9.0
2000-01-01 00:02:00    2.0
2000-01-01 00:02:30    9.0
2000-01-01 00:03:00    3.0

Upsample again, providing a ``method``.

>>> df.asfreq(freq='30S', method='bfill')
                       s
2000-01-01 00:00:00    0.0
2000-01-01 00:00:30    NaN
2000-01-01 00:01:00    NaN
2000-01-01 00:01:30    2.0
2000-01-01 00:02:00    2.0
2000-01-01 00:02:30    3.0
2000-01-01 00:03:00    3.0


14. asof
        Return the last row(s) without any NaNs before `where`.

        The last row (for each element in `where`, if list) without any
        NaN is taken.
        In case of a :class:`~pandas.DataFrame`, the last row without NaN
        considering only the subset of columns (if not `None`)

        If there is no good value, NaN is returned for a Series or
        a Series of NaN values for a DataFrame

        Parameters
        ----------
        where : date or array-like of dates
            Date(s) before which the last row(s) are returned.
        subset : str or array-like of str, default `None`
            For DataFrame, if not `None`, only use these columns to
            check for NaNs.

        Returns
        -------
        scalar, Series, or DataFrame

            The return can be:

            * scalar : when `self` is a Series and `where` is a scalar
            * Series: when `self` is a Series and `where` is an array-like,
              or when `self` is a DataFrame and `where` is a scalar
            * DataFrame : when `self` is a DataFrame and `where` is an
              array-like

            Return scalar, Series, or DataFrame.

        See Also
        --------
        merge_asof : Perform an asof merge. Similar to left join.

        Notes
        -----
        Dates are assumed to be sorted. Raises if this is not the case.

        Examples
        --------
        A Series and a scalar `where`.

        >>> s = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40])
        >>> s
        10    1.0
        20    2.0
        30    NaN
        40    4.0
        dtype: float64

        >>> s.asof(20)
        2.0

        For a sequence `where`, a Series is returned. The first value is
        NaN, because the first element of `where` is before the first
        index value.

        >>> s.asof([5, 20])
        5     NaN
        20    2.0
        dtype: float64

        Missing values are not considered. The following is ``2.0``, not
        NaN, even though NaN is at the index location for ``30``.

        >>> s.asof(30)
        2.0

        Take all columns into consideration

        >>> df = pd.DataFrame({'a': [10, 20, 30, 40, 50],
        ...                    'b': [None, None, None, None, 500]},
        ...                   index=pd.DatetimeIndex(['2018-02-27 09:01:00',
        ...                                           '2018-02-27 09:02:00',
        ...                                           '2018-02-27 09:03:00',
        ...                                           '2018-02-27 09:04:00',
        ...                                           '2018-02-27 09:05:00']))
        >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30',
        ...                           '2018-02-27 09:04:30']))
                              a   b
        2018-02-27 09:03:30 NaN NaN
        2018-02-27 09:04:30 NaN NaN

        Take a single column into consideration

        >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30',
        ...                           '2018-02-27 09:04:30']),
        ...         subset=['a'])
                              a   b
        2018-02-27 09:03:30  30 NaN
        2018-02-27 09:04:30  40 NaN
        

15. assign
        Assign new columns to a DataFrame.

        Returns a new object with all original columns in addition to new ones.
        Existing columns that are re-assigned will be overwritten.

        Parameters
        ----------
        **kwargs : dict of {str: callable or Series}
            The column names are keywords. If the values are
            callable, they are computed on the DataFrame and
            assigned to the new columns. The callable must not
            change input DataFrame (though pandas doesn't check it).
            If the values are not callable, (e.g. a Series, scalar, or array),
            they are simply assigned.

        Returns
        -------
        DataFrame
            A new DataFrame with the new columns in addition to
            all the existing columns.

        Notes
        -----
        Assigning multiple columns within the same ``assign`` is possible.
        Later items in '\*\*kwargs' may refer to newly created or modified
        columns in 'df'; items are computed and assigned into 'df' in order.

        Examples
        --------
        >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]},
        ...                   index=['Portland', 'Berkeley'])
        >>> df
                  temp_c
        Portland    17.0
        Berkeley    25.0

        Where the value is a callable, evaluated on `df`:

        >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)
                  temp_c  temp_f
        Portland    17.0    62.6
        Berkeley    25.0    77.0

        Alternatively, the same behavior can be achieved by directly
        referencing an existing Series or sequence:

        >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32)
                  temp_c  temp_f
        Portland    17.0    62.6
        Berkeley    25.0    77.0

        You can create multiple columns within the same assign where one
        of the columns depends on another one defined within the same assign:

        >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32,
        ...           temp_k=lambda x: (x['temp_f'] +  459.67) * 5 / 9)
                  temp_c  temp_f  temp_k
        Portland    17.0    62.6  290.15
        Berkeley    25.0    77.0  298.15
        

16. astype
        Cast a pandas object to a specified dtype ``dtype``.

        Parameters
        ----------
        dtype : data type, or dict of column name -> data type
            Use a numpy.dtype or Python type to cast entire pandas object to
            the same type. Alternatively, use {col: dtype, ...}, where col is a
            column label and dtype is a numpy.dtype or Python type to cast one
            or more of the DataFrame's columns to column-specific types.
        copy : bool, default True
            Return a copy when ``copy=True`` (be very careful setting
            ``copy=False`` as changes to values then may propagate to other
            pandas objects).
        errors : {'raise', 'ignore'}, default 'raise'
            Control raising of exceptions on invalid data for provided dtype.

            - ``raise`` : allow exceptions to be raised
            - ``ignore`` : suppress exceptions. On error return original object.

        Returns
        -------
        casted : same type as caller

        See Also
        --------
        to_datetime : Convert argument to datetime.
        to_timedelta : Convert argument to timedelta.
        to_numeric : Convert argument to a numeric type.
        numpy.ndarray.astype : Cast a numpy array to a specified type.

        Notes
        -----
        .. deprecated:: 1.3.0

            Using ``astype`` to convert from timezone-naive dtype to
            timezone-aware dtype is deprecated and will raise in a
            future version.  Use :meth:`Series.dt.tz_localize` instead.

        Examples
        --------
        Create a DataFrame:

        >>> d = {'col1': [1, 2], 'col2': [3, 4]}
        >>> df = pd.DataFrame(data=d)
        >>> df.dtypes
        col1    int64
        col2    int64
        dtype: object

        Cast all columns to int32:

        >>> df.astype('int32').dtypes
        col1    int32
        col2    int32
        dtype: object

        Cast col1 to int32 using a dictionary:

        >>> df.astype({'col1': 'int32'}).dtypes
        col1    int32
        col2    int64
        dtype: object

        Create a series:

        >>> ser = pd.Series([1, 2], dtype='int32')
        >>> ser
        0    1
        1    2
        dtype: int32
        >>> ser.astype('int64')
        0    1
        1    2
        dtype: int64

        Convert to categorical type:

        >>> ser.astype('category')
        0    1
        1    2
        dtype: category
        Categories (2, int64): [1, 2]

        Convert to ordered categorical type with custom ordering:

        >>> from pandas.api.types import CategoricalDtype
        >>> cat_dtype = CategoricalDtype(
        ...     categories=[2, 1], ordered=True)
        >>> ser.astype(cat_dtype)
        0    1
        1    2
        dtype: category
        Categories (2, int64): [2 < 1]

        Note that using ``copy=False`` and changing data on a new
        pandas object may propagate changes:

        >>> s1 = pd.Series([1, 2])
        >>> s2 = s1.astype('int64', copy=False)
        >>> s2[0] = 10
        >>> s1  # note that s1[0] has changed too
        0    10
        1     2
        dtype: int64

        Create a series of dates:

        >>> ser_date = pd.Series(pd.date_range('20200101', periods=3))
        >>> ser_date
        0   2020-01-01
        1   2020-01-02
        2   2020-01-03
        dtype: datetime64[ns]
        

17. at
Access a single value for a row/column label pair.

Similar to ``loc``, in that both provide label-based lookups. Use
``at`` if you only need to get or set a single value in a DataFrame
or Series.

Raises
------
KeyError
    * If getting a value and 'label' does not exist in a DataFrame or
        Series.
ValueError
    * If row/column label pair is not a tuple or if any label from
        the pair is not a scalar for DataFrame.
    * If label is list-like (*excluding* NamedTuple) for Series.

See Also
--------
DataFrame.at : Access a single value for a row/column pair by label.
DataFrame.iat : Access a single value for a row/column pair by integer
    position.
DataFrame.loc : Access a group of rows and columns by label(s).
DataFrame.iloc : Access a group of rows and columns by integer
    position(s).
Series.at : Access a single value by label.
Series.iat : Access a single value by integer position.
Series.loc : Access a group of rows by label(s).
Series.iloc : Access a group of rows by integer position(s).

Notes
-----
See :ref:`Fast scalar value getting and setting <indexing.basics.get_value>`
for more details.

Examples
--------
>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
...                   index=[4, 5, 6], columns=['A', 'B', 'C'])
>>> df
    A   B   C
4   0   2   3
5   0   4   1
6  10  20  30

Get value at specified row/column pair

>>> df.at[4, 'B']
2

Set value at specified row/column pair

>>> df.at[4, 'B'] = 10
>>> df.at[4, 'B']
10

Get value within a Series

>>> df.loc[5].at['B']
4


18. at_time
        Select values at particular time of day (e.g., 9:30AM).

        Parameters
        ----------
        time : datetime.time or str
        axis : {0 or 'index', 1 or 'columns'}, default 0
            For `Series` this parameter is unused and defaults to 0.

        Returns
        -------
        Series or DataFrame

        Raises
        ------
        TypeError
            If the index is not  a :class:`DatetimeIndex`

        See Also
        --------
        between_time : Select values between particular times of the day.
        first : Select initial periods of time series based on a date offset.
        last : Select final periods of time series based on a date offset.
        DatetimeIndex.indexer_at_time : Get just the index locations for
            values at particular time of the day.

        Examples
        --------
        >>> i = pd.date_range('2018-04-09', periods=4, freq='12H')
        >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
        >>> ts
                             A
        2018-04-09 00:00:00  1
        2018-04-09 12:00:00  2
        2018-04-10 00:00:00  3
        2018-04-10 12:00:00  4

        >>> ts.at_time('12:00')
                             A
        2018-04-09 12:00:00  2
        2018-04-10 12:00:00  4
        

19. attrs
dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
    (key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
    d = {}
    for k, v in iterable:
        d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
    in the keyword argument list.  For example:  dict(one=1, two=2)

20. axes
Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

21. backfill
Synonym for :meth:`DataFrame.fillna` with ``method='bfill'``.

Returns
-------
Series/DataFrame or None
    Object with missing values filled or None if ``inplace=True``.


22. between_time
        Select values between particular times of the day (e.g., 9:00-9:30 AM).

        By setting ``start_time`` to be later than ``end_time``,
        you can get the times that are *not* between the two times.

        Parameters
        ----------
        start_time : datetime.time or str
            Initial time as a time filter limit.
        end_time : datetime.time or str
            End time as a time filter limit.
        include_start : bool, default True
            Whether the start time needs to be included in the result.

            .. deprecated:: 1.4.0
               Arguments `include_start` and `include_end` have been deprecated
               to standardize boundary inputs. Use `inclusive` instead, to set
               each bound as closed or open.
        include_end : bool, default True
            Whether the end time needs to be included in the result.

            .. deprecated:: 1.4.0
               Arguments `include_start` and `include_end` have been deprecated
               to standardize boundary inputs. Use `inclusive` instead, to set
               each bound as closed or open.
        inclusive : {"both", "neither", "left", "right"}, default "both"
            Include boundaries; whether to set each bound as closed or open.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Determine range time on index or columns value.
            For `Series` this parameter is unused and defaults to 0.

        Returns
        -------
        Series or DataFrame
            Data from the original object filtered to the specified dates range.

        Raises
        ------
        TypeError
            If the index is not  a :class:`DatetimeIndex`

        See Also
        --------
        at_time : Select values at a particular time of the day.
        first : Select initial periods of time series based on a date offset.
        last : Select final periods of time series based on a date offset.
        DatetimeIndex.indexer_between_time : Get just the index locations for
            values between particular times of the day.

        Examples
        --------
        >>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min')
        >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
        >>> ts
                             A
        2018-04-09 00:00:00  1
        2018-04-10 00:20:00  2
        2018-04-11 00:40:00  3
        2018-04-12 01:00:00  4

        >>> ts.between_time('0:15', '0:45')
                             A
        2018-04-10 00:20:00  2
        2018-04-11 00:40:00  3

        You get the times that are *not* between two times by setting
        ``start_time`` later than ``end_time``:

        >>> ts.between_time('0:45', '0:15')
                             A
        2018-04-09 00:00:00  1
        2018-04-12 01:00:00  4
        

23. bfill
None

24. bool
        Return the bool of a single element Series or DataFrame.

        This must be a boolean scalar value, either True or False. It will raise a
        ValueError if the Series or DataFrame does not have exactly 1 element, or that
        element is not boolean (integer values 0 and 1 will also raise an exception).

        Returns
        -------
        bool
            The value in the Series or DataFrame.

        See Also
        --------
        Series.astype : Change the data type of a Series, including to boolean.
        DataFrame.astype : Change the data type of a DataFrame, including to boolean.
        numpy.bool_ : NumPy boolean data type, used by pandas for boolean values.

        Examples
        --------
        The method will only work for single element objects with a boolean value:

        >>> pd.Series([True]).bool()
        True
        >>> pd.Series([False]).bool()
        False

        >>> pd.DataFrame({'col': [True]}).bool()
        True
        >>> pd.DataFrame({'col': [False]}).bool()
        False
        

25. boxplot
Make a box plot from DataFrame columns.

Make a box-and-whisker plot from DataFrame columns, optionally grouped
by some other columns. A box plot is a method for graphically depicting
groups of numerical data through their quartiles.
The box extends from the Q1 to Q3 quartile values of the data,
with a line at the median (Q2). The whiskers extend from the edges
of box to show the range of the data. By default, they extend no more than
`1.5 * IQR (IQR = Q3 - Q1)` from the edges of the box, ending at the farthest
data point within that interval. Outliers are plotted as separate dots.

For further details see
Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`_.

Parameters
----------
column : str or list of str, optional
    Column name or list of names, or vector.
    Can be any valid input to :meth:`pandas.DataFrame.groupby`.
by : str or array-like, optional
    Column in the DataFrame to :meth:`pandas.DataFrame.groupby`.
    One box-plot will be done per value of columns in `by`.
ax : object of class matplotlib.axes.Axes, optional
    The matplotlib axes to be used by boxplot.
fontsize : float or str
    Tick label font size in points or as a string (e.g., `large`).
rot : int or float, default 0
    The rotation angle of labels (in degrees)
    with respect to the screen coordinate system.
grid : bool, default True
    Setting this to True will show the grid.
figsize : A tuple (width, height) in inches
    The size of the figure to create in matplotlib.
layout : tuple (rows, columns), optional
    For example, (3, 5) will display the subplots
    using 3 columns and 5 rows, starting from the top-left.
return_type : {'axes', 'dict', 'both'} or None, default 'axes'
    The kind of object to return. The default is ``axes``.

    * 'axes' returns the matplotlib axes the boxplot is drawn on.
    * 'dict' returns a dictionary whose values are the matplotlib
      Lines of the boxplot.
    * 'both' returns a namedtuple with the axes and dict.
    * when grouping with ``by``, a Series mapping columns to
      ``return_type`` is returned.

      If ``return_type`` is `None`, a NumPy array
      of axes with the same shape as ``layout`` is returned.
backend : str, default None
    Backend to use instead of the backend specified in the option
    ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
    specify the ``plotting.backend`` for the whole session, set
    ``pd.options.plotting.backend``.

    .. versionadded:: 1.0.0

**kwargs
    All other plotting keyword arguments to be passed to
    :func:`matplotlib.pyplot.boxplot`.

Returns
-------
result
    See Notes.

See Also
--------
Series.plot.hist: Make a histogram.
matplotlib.pyplot.boxplot : Matplotlib equivalent plot.

Notes
-----
The return type depends on the `return_type` parameter:

* 'axes' : object of class matplotlib.axes.Axes
* 'dict' : dict of matplotlib.lines.Line2D objects
* 'both' : a namedtuple with structure (ax, lines)

For data grouped with ``by``, return a Series of the above or a numpy
array:

* :class:`~pandas.Series`
* :class:`~numpy.array` (for ``return_type = None``)

Use ``return_type='dict'`` when you want to tweak the appearance
of the lines after plotting. In this case a dict containing the Lines
making up the boxes, caps, fliers, medians, and whiskers is returned.

Examples
--------

Boxplots can be created for every column in the dataframe
by ``df.boxplot()`` or indicating the columns to be used:

.. plot::
    :context: close-figs

    >>> np.random.seed(1234)
    >>> df = pd.DataFrame(np.random.randn(10, 4),
    ...                   columns=['Col1', 'Col2', 'Col3', 'Col4'])
    >>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3'])  # doctest: +SKIP

Boxplots of variables distributions grouped by the values of a third
variable can be created using the option ``by``. For instance:

.. plot::
    :context: close-figs

    >>> df = pd.DataFrame(np.random.randn(10, 2),
    ...                   columns=['Col1', 'Col2'])
    >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
    ...                      'B', 'B', 'B', 'B', 'B'])
    >>> boxplot = df.boxplot(by='X')

A list of strings (i.e. ``['X', 'Y']``) can be passed to boxplot
in order to group the data by combination of the variables in the x-axis:

.. plot::
    :context: close-figs

    >>> df = pd.DataFrame(np.random.randn(10, 3),
    ...                   columns=['Col1', 'Col2', 'Col3'])
    >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
    ...                      'B', 'B', 'B', 'B', 'B'])
    >>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A',
    ...                      'B', 'A', 'B', 'A', 'B'])
    >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y'])

The layout of boxplot can be adjusted giving a tuple to ``layout``:

.. plot::
    :context: close-figs

    >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
    ...                      layout=(2, 1))

Additional formatting can be done to the boxplot, like suppressing the grid
(``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``)
or changing the fontsize (i.e. ``fontsize=15``):

.. plot::
    :context: close-figs

    >>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15)  # doctest: +SKIP

The parameter ``return_type`` can be used to select the type of element
returned by `boxplot`.  When ``return_type='axes'`` is selected,
the matplotlib axes on which the boxplot is drawn are returned:

    >>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes')
    >>> type(boxplot)
    <class 'matplotlib.axes._subplots.AxesSubplot'>

When grouping with ``by``, a Series mapping columns to ``return_type``
is returned:

    >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
    ...                      return_type='axes')
    >>> type(boxplot)
    <class 'pandas.core.series.Series'>

If ``return_type`` is `None`, a NumPy array of axes with the same shape
as ``layout`` is returned:

    >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
    ...                      return_type=None)
    >>> type(boxplot)
    <class 'numpy.ndarray'>


26. clip
None

27. columns
    Immutable sequence used for indexing and alignment.

    The basic object storing axis labels for all pandas objects.

    Parameters
    ----------
    data : array-like (1-dimensional)
    dtype : NumPy dtype (default: object)
        If dtype is None, we find the dtype that best fits the data.
        If an actual dtype is provided, we coerce to that dtype if it's safe.
        Otherwise, an error will be raised.
    copy : bool
        Make a copy of input ndarray.
    name : object
        Name to be stored in the index.
    tupleize_cols : bool (default: True)
        When True, attempt to create a MultiIndex if possible.

    See Also
    --------
    RangeIndex : Index implementing a monotonic integer range.
    CategoricalIndex : Index of :class:`Categorical` s.
    MultiIndex : A multi-level, or hierarchical Index.
    IntervalIndex : An Index of :class:`Interval` s.
    DatetimeIndex : Index of datetime64 data.
    TimedeltaIndex : Index of timedelta64 data.
    PeriodIndex : Index of Period data.
    NumericIndex : Index of numpy int/uint/float data.
    Int64Index : Index of purely int64 labels (deprecated).
    UInt64Index : Index of purely uint64 labels (deprecated).
    Float64Index : Index of  purely float64 labels (deprecated).

    Notes
    -----
    An Index instance can **only** contain hashable objects

    Examples
    --------
    >>> pd.Index([1, 2, 3])
    Int64Index([1, 2, 3], dtype='int64')

    >>> pd.Index(list('abc'))
    Index(['a', 'b', 'c'], dtype='object')
    

28. combine
        Perform column-wise combine with another DataFrame.

        Combines a DataFrame with `other` DataFrame using `func`
        to element-wise combine columns. The row and column indexes of the
        resulting DataFrame will be the union of the two.

        Parameters
        ----------
        other : DataFrame
            The DataFrame to merge column-wise.
        func : function
            Function that takes two series as inputs and return a Series or a
            scalar. Used to merge the two dataframes column by columns.
        fill_value : scalar value, default None
            The value to fill NaNs with prior to passing any column to the
            merge func.
        overwrite : bool, default True
            If True, columns in `self` that do not exist in `other` will be
            overwritten with NaNs.

        Returns
        -------
        DataFrame
            Combination of the provided DataFrames.

        See Also
        --------
        DataFrame.combine_first : Combine two DataFrame objects and default to
            non-null values in frame calling the method.

        Examples
        --------
        Combine using a simple function that chooses the smaller column.

        >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
        >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2
        >>> df1.combine(df2, take_smaller)
           A  B
        0  0  3
        1  0  3

        Example using a true element-wise combine function.

        >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]})
        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
        >>> df1.combine(df2, np.minimum)
           A  B
        0  1  2
        1  0  3

        Using `fill_value` fills Nones prior to passing the column to the
        merge function.

        >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
        >>> df1.combine(df2, take_smaller, fill_value=-5)
           A    B
        0  0 -5.0
        1  0  4.0

        However, if the same element in both dataframes is None, that None
        is preserved

        >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]})
        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]})
        >>> df1.combine(df2, take_smaller, fill_value=-5)
            A    B
        0  0 -5.0
        1  0  3.0

        Example that demonstrates the use of `overwrite` and behavior when
        the axis differ between the dataframes.

        >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]})
        >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2])
        >>> df1.combine(df2, take_smaller)
             A    B     C
        0  NaN  NaN   NaN
        1  NaN  3.0 -10.0
        2  NaN  3.0   1.0

        >>> df1.combine(df2, take_smaller, overwrite=False)
             A    B     C
        0  0.0  NaN   NaN
        1  0.0  3.0 -10.0
        2  NaN  3.0   1.0

        Demonstrating the preference of the passed in dataframe.

        >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2])
        >>> df2.combine(df1, take_smaller)
           A    B   C
        0  0.0  NaN NaN
        1  0.0  3.0 NaN
        2  NaN  3.0 NaN

        >>> df2.combine(df1, take_smaller, overwrite=False)
             A    B   C
        0  0.0  NaN NaN
        1  0.0  3.0 1.0
        2  NaN  3.0 1.0
        

29. combine_first
        Update null elements with value in the same location in `other`.

        Combine two DataFrame objects by filling null values in one DataFrame
        with non-null values from other DataFrame. The row and column indexes
        of the resulting DataFrame will be the union of the two. The resulting
        dataframe contains the 'first' dataframe values and overrides the
        second one values where both first.loc[index, col] and
        second.loc[index, col] are not missing values, upon calling
        first.combine_first(second).

        Parameters
        ----------
        other : DataFrame
            Provided DataFrame to use to fill null values.

        Returns
        -------
        DataFrame
            The result of combining the provided DataFrame with the other object.

        See Also
        --------
        DataFrame.combine : Perform series-wise operation on two DataFrames
            using a given function.

        Examples
        --------
        >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
        >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
        >>> df1.combine_first(df2)
             A    B
        0  1.0  3.0
        1  0.0  4.0

        Null values still persist if the location of that null value
        does not exist in `other`

        >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]})
        >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2])
        >>> df1.combine_first(df2)
             A    B    C
        0  NaN  4.0  NaN
        1  0.0  3.0  1.0
        2  NaN  3.0  1.0
        

30. compare
Compare to another DataFrame and show the differences.

.. versionadded:: 1.1.0

Parameters
----------
other : DataFrame
    Object to compare with.

align_axis : {0 or 'index', 1 or 'columns'}, default 1
    Determine which axis to align the comparison on.

    * 0, or 'index' : Resulting differences are stacked vertically
        with rows drawn alternately from self and other.
    * 1, or 'columns' : Resulting differences are aligned horizontally
        with columns drawn alternately from self and other.

keep_shape : bool, default False
    If true, all rows and columns are kept.
    Otherwise, only the ones with different values are kept.

keep_equal : bool, default False
    If true, the result keeps values that are equal.
    Otherwise, equal values are shown as NaNs.

result_names : tuple, default ('self', 'other')
    Set the dataframes names in the comparison.

    .. versionadded:: 1.5.0

Returns
-------
DataFrame
    DataFrame that shows the differences stacked side by side.

    The resulting index will be a MultiIndex with 'self' and 'other'
    stacked alternately at the inner level.

Raises
------
ValueError
    When the two DataFrames don't have identical labels or shape.

See Also
--------
Series.compare : Compare with another Series and show differences.
DataFrame.equals : Test whether two objects contain the same elements.

Notes
-----
Matching NaNs will not appear as a difference.

Can only compare identically-labeled
(i.e. same shape, identical row and column labels) DataFrames

Examples
--------
>>> df = pd.DataFrame(
...     {
...         "col1": ["a", "a", "b", "b", "a"],
...         "col2": [1.0, 2.0, 3.0, np.nan, 5.0],
...         "col3": [1.0, 2.0, 3.0, 4.0, 5.0]
...     },
...     columns=["col1", "col2", "col3"],
... )
>>> df
  col1  col2  col3
0    a   1.0   1.0
1    a   2.0   2.0
2    b   3.0   3.0
3    b   NaN   4.0
4    a   5.0   5.0

>>> df2 = df.copy()
>>> df2.loc[0, 'col1'] = 'c'
>>> df2.loc[2, 'col3'] = 4.0
>>> df2
  col1  col2  col3
0    c   1.0   1.0
1    a   2.0   2.0
2    b   3.0   4.0
3    b   NaN   4.0
4    a   5.0   5.0

Align the differences on columns

>>> df.compare(df2)
  col1       col3
  self other self other
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0

Assign result_names

>>> df.compare(df2, result_names=("left", "right"))
  col1       col3
  left right left right
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0

Stack the differences on rows

>>> df.compare(df2, align_axis=0)
        col1  col3
0 self     a   NaN
  other    c   NaN
2 self   NaN   3.0
  other  NaN   4.0

Keep the equal values

>>> df.compare(df2, keep_equal=True)
  col1       col3
  self other self other
0    a     c  1.0   1.0
2    b     b  3.0   4.0

Keep all original rows and columns

>>> df.compare(df2, keep_shape=True)
  col1       col2       col3
  self other self other self other
0    a     c  NaN   NaN  NaN   NaN
1  NaN   NaN  NaN   NaN  NaN   NaN
2  NaN   NaN  NaN   NaN  3.0   4.0
3  NaN   NaN  NaN   NaN  NaN   NaN
4  NaN   NaN  NaN   NaN  NaN   NaN

Keep all original rows and columns and also all original values

>>> df.compare(df2, keep_shape=True, keep_equal=True)
  col1       col2       col3
  self other self other self other
0    a     c  1.0   1.0  1.0   1.0
1    a     a  2.0   2.0  2.0   2.0
2    b     b  3.0   3.0  3.0   4.0
3    b     b  NaN   NaN  4.0   4.0
4    a     a  5.0   5.0  5.0   5.0


31. convert_dtypes
        Convert columns to best possible dtypes using dtypes supporting ``pd.NA``.

        .. versionadded:: 1.0.0

        Parameters
        ----------
        infer_objects : bool, default True
            Whether object dtypes should be converted to the best possible types.
        convert_string : bool, default True
            Whether object dtypes should be converted to ``StringDtype()``.
        convert_integer : bool, default True
            Whether, if possible, conversion can be done to integer extension types.
        convert_boolean : bool, defaults True
            Whether object dtypes should be converted to ``BooleanDtypes()``.
        convert_floating : bool, defaults True
            Whether, if possible, conversion can be done to floating extension types.
            If `convert_integer` is also True, preference will be give to integer
            dtypes if the floats can be faithfully casted to integers.

            .. versionadded:: 1.2.0

        Returns
        -------
        Series or DataFrame
            Copy of input object with new dtype.

        See Also
        --------
        infer_objects : Infer dtypes of objects.
        to_datetime : Convert argument to datetime.
        to_timedelta : Convert argument to timedelta.
        to_numeric : Convert argument to a numeric type.

        Notes
        -----
        By default, ``convert_dtypes`` will attempt to convert a Series (or each
        Series in a DataFrame) to dtypes that support ``pd.NA``. By using the options
        ``convert_string``, ``convert_integer``, ``convert_boolean`` and
        ``convert_boolean``, it is possible to turn off individual conversions
        to ``StringDtype``, the integer extension types, ``BooleanDtype``
        or floating extension types, respectively.

        For object-dtyped columns, if ``infer_objects`` is ``True``, use the inference
        rules as during normal Series/DataFrame construction.  Then, if possible,
        convert to ``StringDtype``, ``BooleanDtype`` or an appropriate integer
        or floating extension type, otherwise leave as ``object``.

        If the dtype is integer, convert to an appropriate integer extension type.

        If the dtype is numeric, and consists of all integers, convert to an
        appropriate integer extension type. Otherwise, convert to an
        appropriate floating extension type.

        .. versionchanged:: 1.2
            Starting with pandas 1.2, this method also converts float columns
            to the nullable floating extension type.

        In the future, as new dtypes are added that support ``pd.NA``, the results
        of this method will change to support those new dtypes.

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     {
        ...         "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")),
        ...         "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")),
        ...         "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")),
        ...         "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")),
        ...         "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")),
        ...         "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")),
        ...     }
        ... )

        Start with a DataFrame with default dtypes.

        >>> df
           a  b      c    d     e      f
        0  1  x   True    h  10.0    NaN
        1  2  y  False    i   NaN  100.5
        2  3  z    NaN  NaN  20.0  200.0

        >>> df.dtypes
        a      int32
        b     object
        c     object
        d     object
        e    float64
        f    float64
        dtype: object

        Convert the DataFrame to use best possible dtypes.

        >>> dfn = df.convert_dtypes()
        >>> dfn
           a  b      c     d     e      f
        0  1  x   True     h    10   <NA>
        1  2  y  False     i  <NA>  100.5
        2  3  z   <NA>  <NA>    20  200.0

        >>> dfn.dtypes
        a      Int32
        b     string
        c    boolean
        d     string
        e      Int64
        f    Float64
        dtype: object

        Start with a Series of strings and missing data represented by ``np.nan``.

        >>> s = pd.Series(["a", "b", np.nan])
        >>> s
        0      a
        1      b
        2    NaN
        dtype: object

        Obtain a Series with dtype ``StringDtype``.

        >>> s.convert_dtypes()
        0       a
        1       b
        2    <NA>
        dtype: string
        

32. copy
        Make a copy of this object's indices and data.

        When ``deep=True`` (default), a new object will be created with a
        copy of the calling object's data and indices. Modifications to
        the data or indices of the copy will not be reflected in the
        original object (see notes below).

        When ``deep=False``, a new object will be created without copying
        the calling object's data or index (only references to the data
        and index are copied). Any changes to the data of the original
        will be reflected in the shallow copy (and vice versa).

        Parameters
        ----------
        deep : bool, default True
            Make a deep copy, including a copy of the data and the indices.
            With ``deep=False`` neither the indices nor the data are copied.

        Returns
        -------
        copy : Series or DataFrame
            Object type matches caller.

        Notes
        -----
        When ``deep=True``, data is copied but actual Python objects
        will not be copied recursively, only the reference to the object.
        This is in contrast to `copy.deepcopy` in the Standard Library,
        which recursively copies object data (see examples below).

        While ``Index`` objects are copied when ``deep=True``, the underlying
        numpy array is not copied for performance reasons. Since ``Index`` is
        immutable, the underlying data can be safely shared and a copy
        is not needed.

        Since pandas is not thread safe, see the
        :ref:`gotchas <gotchas.thread-safety>` when copying in a threading
        environment.

        Examples
        --------
        >>> s = pd.Series([1, 2], index=["a", "b"])
        >>> s
        a    1
        b    2
        dtype: int64

        >>> s_copy = s.copy()
        >>> s_copy
        a    1
        b    2
        dtype: int64

        **Shallow copy versus default (deep) copy:**

        >>> s = pd.Series([1, 2], index=["a", "b"])
        >>> deep = s.copy()
        >>> shallow = s.copy(deep=False)

        Shallow copy shares data and index with original.

        >>> s is shallow
        False
        >>> s.values is shallow.values and s.index is shallow.index
        True

        Deep copy has own copy of data and index.

        >>> s is deep
        False
        >>> s.values is deep.values or s.index is deep.index
        False

        Updates to the data shared by shallow copy and original is reflected
        in both; deep copy remains unchanged.

        >>> s[0] = 3
        >>> shallow[1] = 4
        >>> s
        a    3
        b    4
        dtype: int64
        >>> shallow
        a    3
        b    4
        dtype: int64
        >>> deep
        a    1
        b    2
        dtype: int64

        Note that when copying an object containing Python objects, a deep copy
        will copy the data, but will not do so recursively. Updating a nested
        data object will be reflected in the deep copy.

        >>> s = pd.Series([[1, 2], [3, 4]])
        >>> deep = s.copy()
        >>> s[0][0] = 10
        >>> s
        0    [10, 2]
        1     [3, 4]
        dtype: object
        >>> deep
        0    [10, 2]
        1     [3, 4]
        dtype: object
        

33. corr
        Compute pairwise correlation of columns, excluding NA/null values.

        Parameters
        ----------
        method : {'pearson', 'kendall', 'spearman'} or callable
            Method of correlation:

            * pearson : standard correlation coefficient
            * kendall : Kendall Tau correlation coefficient
            * spearman : Spearman rank correlation
            * callable: callable with input two 1d ndarrays
                and returning a float. Note that the returned matrix from corr
                will have 1 along the diagonals and will be symmetric
                regardless of the callable's behavior.
        min_periods : int, optional
            Minimum number of observations required per pair of columns
            to have a valid result. Currently only available for Pearson
            and Spearman correlation.
        numeric_only : bool, default True
            Include only `float`, `int` or `boolean` data.

            .. versionadded:: 1.5.0

            .. deprecated:: 1.5.0
                The default value of ``numeric_only`` will be ``False`` in a future
                version of pandas.

        Returns
        -------
        DataFrame
            Correlation matrix.

        See Also
        --------
        DataFrame.corrwith : Compute pairwise correlation with another
            DataFrame or Series.
        Series.corr : Compute the correlation between two Series.

        Notes
        -----
        Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations.

        * `Pearson correlation coefficient <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`_
        * `Kendall rank correlation coefficient <https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient>`_
        * `Spearman's rank correlation coefficient <https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient>`_

        Examples
        --------
        >>> def histogram_intersection(a, b):
        ...     v = np.minimum(a, b).sum().round(decimals=1)
        ...     return v
        >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)],
        ...                   columns=['dogs', 'cats'])
        >>> df.corr(method=histogram_intersection)
              dogs  cats
        dogs   1.0   0.3
        cats   0.3   1.0

        >>> df = pd.DataFrame([(1, 1), (2, np.nan), (np.nan, 3), (4, 4)],
        ...                   columns=['dogs', 'cats'])
        >>> df.corr(min_periods=3)
              dogs  cats
        dogs   1.0   NaN
        cats   NaN   1.0
        

34. corrwith
        Compute pairwise correlation.

        Pairwise correlation is computed between rows or columns of
        DataFrame with rows or columns of Series or DataFrame. DataFrames
        are first aligned along both axes before computing the
        correlations.

        Parameters
        ----------
        other : DataFrame, Series
            Object with which to compute correlations.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            The axis to use. 0 or 'index' to compute row-wise, 1 or 'columns' for
            column-wise.
        drop : bool, default False
            Drop missing indices from result.
        method : {'pearson', 'kendall', 'spearman'} or callable
            Method of correlation:

            * pearson : standard correlation coefficient
            * kendall : Kendall Tau correlation coefficient
            * spearman : Spearman rank correlation
            * callable: callable with input two 1d ndarrays
                and returning a float.

        numeric_only : bool, default True
            Include only `float`, `int` or `boolean` data.

            .. versionadded:: 1.5.0

            .. deprecated:: 1.5.0
                The default value of ``numeric_only`` will be ``False`` in a future
                version of pandas.

        Returns
        -------
        Series
            Pairwise correlations.

        See Also
        --------
        DataFrame.corr : Compute pairwise correlation of columns.

        Examples
        --------
        >>> index = ["a", "b", "c", "d", "e"]
        >>> columns = ["one", "two", "three", "four"]
        >>> df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns)
        >>> df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns)
        >>> df1.corrwith(df2)
        one      1.0
        two      1.0
        three    1.0
        four     1.0
        dtype: float64

        >>> df2.corrwith(df1, axis=1)
        a    1.0
        b    1.0
        c    1.0
        d    1.0
        e    NaN
        dtype: float64
        

35. count
        Count non-NA cells for each column or row.

        The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending
        on `pandas.options.mode.use_inf_as_na`) are considered NA.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            If 0 or 'index' counts are generated for each column.
            If 1 or 'columns' counts are generated for each row.
        level : int or str, optional
            If the axis is a `MultiIndex` (hierarchical), count along a
            particular `level`, collapsing into a `DataFrame`.
            A `str` specifies the level name.
        numeric_only : bool, default False
            Include only `float`, `int` or `boolean` data.

        Returns
        -------
        Series or DataFrame
            For each column/row the number of non-NA/null entries.
            If `level` is specified returns a `DataFrame`.

        See Also
        --------
        Series.count: Number of non-NA elements in a Series.
        DataFrame.value_counts: Count unique combinations of columns.
        DataFrame.shape: Number of DataFrame rows and columns (including NA
            elements).
        DataFrame.isna: Boolean same-sized DataFrame showing places of NA
            elements.

        Examples
        --------
        Constructing DataFrame from a dictionary:

        >>> df = pd.DataFrame({"Person":
        ...                    ["John", "Myla", "Lewis", "John", "Myla"],
        ...                    "Age": [24., np.nan, 21., 33, 26],
        ...                    "Single": [False, True, True, True, False]})
        >>> df
           Person   Age  Single
        0    John  24.0   False
        1    Myla   NaN    True
        2   Lewis  21.0    True
        3    John  33.0    True
        4    Myla  26.0   False

        Notice the uncounted NA values:

        >>> df.count()
        Person    5
        Age       4
        Single    5
        dtype: int64

        Counts for each **row**:

        >>> df.count(axis='columns')
        0    3
        1    2
        2    3
        3    3
        4    3
        dtype: int64
        

36. cov
        Compute pairwise covariance of columns, excluding NA/null values.

        Compute the pairwise covariance among the series of a DataFrame.
        The returned data frame is the `covariance matrix
        <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns
        of the DataFrame.

        Both NA and null values are automatically excluded from the
        calculation. (See the note below about bias from missing values.)
        A threshold can be set for the minimum number of
        observations for each value created. Comparisons with observations
        below this threshold will be returned as ``NaN``.

        This method is generally used for the analysis of time series data to
        understand the relationship between different measures
        across time.

        Parameters
        ----------
        min_periods : int, optional
            Minimum number of observations required per pair of columns
            to have a valid result.

        ddof : int, default 1
            Delta degrees of freedom.  The divisor used in calculations
            is ``N - ddof``, where ``N`` represents the number of elements.

            .. versionadded:: 1.1.0

        numeric_only : bool, default True
            Include only `float`, `int` or `boolean` data.

            .. versionadded:: 1.5.0

            .. deprecated:: 1.5.0
                The default value of ``numeric_only`` will be ``False`` in a future
                version of pandas.

        Returns
        -------
        DataFrame
            The covariance matrix of the series of the DataFrame.

        See Also
        --------
        Series.cov : Compute covariance with another Series.
        core.window.ewm.ExponentialMovingWindow.cov : Exponential weighted sample
            covariance.
        core.window.expanding.Expanding.cov : Expanding sample covariance.
        core.window.rolling.Rolling.cov : Rolling sample covariance.

        Notes
        -----
        Returns the covariance matrix of the DataFrame's time series.
        The covariance is normalized by N-ddof.

        For DataFrames that have Series that are missing data (assuming that
        data is `missing at random
        <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__)
        the returned covariance matrix will be an unbiased estimate
        of the variance and covariance between the member Series.

        However, for many applications this estimate may not be acceptable
        because the estimate covariance matrix is not guaranteed to be positive
        semi-definite. This could lead to estimate correlations having
        absolute values which are greater than one, and/or a non-invertible
        covariance matrix. See `Estimation of covariance matrices
        <https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_
        matrices>`__ for more details.

        Examples
        --------
        >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)],
        ...                   columns=['dogs', 'cats'])
        >>> df.cov()
                  dogs      cats
        dogs  0.666667 -1.000000
        cats -1.000000  1.666667

        >>> np.random.seed(42)
        >>> df = pd.DataFrame(np.random.randn(1000, 5),
        ...                   columns=['a', 'b', 'c', 'd', 'e'])
        >>> df.cov()
                  a         b         c         d         e
        a  0.998438 -0.020161  0.059277 -0.008943  0.014144
        b -0.020161  1.059352 -0.008543 -0.024738  0.009826
        c  0.059277 -0.008543  1.010670 -0.001486 -0.000271
        d -0.008943 -0.024738 -0.001486  0.921297 -0.013692
        e  0.014144  0.009826 -0.000271 -0.013692  0.977795

        **Minimum number of periods**

        This method also supports an optional ``min_periods`` keyword
        that specifies the required minimum number of non-NA observations for
        each column pair in order to have a valid result:

        >>> np.random.seed(42)
        >>> df = pd.DataFrame(np.random.randn(20, 3),
        ...                   columns=['a', 'b', 'c'])
        >>> df.loc[df.index[:5], 'a'] = np.nan
        >>> df.loc[df.index[5:10], 'b'] = np.nan
        >>> df.cov(min_periods=12)
                  a         b         c
        a  0.316741       NaN -0.150812
        b       NaN  1.248003  0.191417
        c -0.150812  0.191417  0.895202
        

37. cummax
Return cumulative maximum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative
maximum.

Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
    The index or the name of the axis. 0 is equivalent to None or 'index'.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values. If an entire row/column is NA, the result
    will be NA.
*args, **kwargs
    Additional keywords have no effect but might be accepted for
    compatibility with NumPy.

Returns
-------
Series or DataFrame
    Return cumulative maximum of Series or DataFrame.

See Also
--------
core.window.expanding.Expanding.max : Similar functionality
    but ignores ``NaN`` values.
DataFrame.max : Return the maximum over
    DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis.
DataFrame.cummin : Return cumulative minimum over DataFrame axis.
DataFrame.cumsum : Return cumulative sum over DataFrame axis.
DataFrame.cumprod : Return cumulative product over DataFrame axis.

Examples
--------
**Series**

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummax()
0    2.0
1    NaN
2    5.0
3    5.0
4    5.0
dtype: float64

To include NA values in the operation, use ``skipna=False``

>>> s.cummax(skipna=False)
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

**DataFrame**

>>> df = pd.DataFrame([[2.0, 1.0],
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the maximum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.

>>> df.cummax()
     A    B
0  2.0  1.0
1  3.0  NaN
2  3.0  1.0

To iterate over columns and find the maximum in each row,
use ``axis=1``

>>> df.cummax(axis=1)
     A    B
0  2.0  2.0
1  3.0  NaN
2  1.0  1.0


38. cummin
Return cumulative minimum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative
minimum.

Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
    The index or the name of the axis. 0 is equivalent to None or 'index'.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values. If an entire row/column is NA, the result
    will be NA.
*args, **kwargs
    Additional keywords have no effect but might be accepted for
    compatibility with NumPy.

Returns
-------
Series or DataFrame
    Return cumulative minimum of Series or DataFrame.

See Also
--------
core.window.expanding.Expanding.min : Similar functionality
    but ignores ``NaN`` values.
DataFrame.min : Return the minimum over
    DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis.
DataFrame.cummin : Return cumulative minimum over DataFrame axis.
DataFrame.cumsum : Return cumulative sum over DataFrame axis.
DataFrame.cumprod : Return cumulative product over DataFrame axis.

Examples
--------
**Series**

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummin()
0    2.0
1    NaN
2    2.0
3   -1.0
4   -1.0
dtype: float64

To include NA values in the operation, use ``skipna=False``

>>> s.cummin(skipna=False)
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

**DataFrame**

>>> df = pd.DataFrame([[2.0, 1.0],
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the minimum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.

>>> df.cummin()
     A    B
0  2.0  1.0
1  2.0  NaN
2  1.0  0.0

To iterate over columns and find the minimum in each row,
use ``axis=1``

>>> df.cummin(axis=1)
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0


39. cumprod
Return cumulative product over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative
product.

Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
    The index or the name of the axis. 0 is equivalent to None or 'index'.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values. If an entire row/column is NA, the result
    will be NA.
*args, **kwargs
    Additional keywords have no effect but might be accepted for
    compatibility with NumPy.

Returns
-------
Series or DataFrame
    Return cumulative product of Series or DataFrame.

See Also
--------
core.window.expanding.Expanding.prod : Similar functionality
    but ignores ``NaN`` values.
DataFrame.prod : Return the product over
    DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis.
DataFrame.cummin : Return cumulative minimum over DataFrame axis.
DataFrame.cumsum : Return cumulative sum over DataFrame axis.
DataFrame.cumprod : Return cumulative product over DataFrame axis.

Examples
--------
**Series**

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumprod()
0     2.0
1     NaN
2    10.0
3   -10.0
4    -0.0
dtype: float64

To include NA values in the operation, use ``skipna=False``

>>> s.cumprod(skipna=False)
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

**DataFrame**

>>> df = pd.DataFrame([[2.0, 1.0],
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the product
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.

>>> df.cumprod()
     A    B
0  2.0  1.0
1  6.0  NaN
2  6.0  0.0

To iterate over columns and find the product in each row,
use ``axis=1``

>>> df.cumprod(axis=1)
     A    B
0  2.0  2.0
1  3.0  NaN
2  1.0  0.0


40. cumsum
Return cumulative sum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative
sum.

Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
    The index or the name of the axis. 0 is equivalent to None or 'index'.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values. If an entire row/column is NA, the result
    will be NA.
*args, **kwargs
    Additional keywords have no effect but might be accepted for
    compatibility with NumPy.

Returns
-------
Series or DataFrame
    Return cumulative sum of Series or DataFrame.

See Also
--------
core.window.expanding.Expanding.sum : Similar functionality
    but ignores ``NaN`` values.
DataFrame.sum : Return the sum over
    DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis.
DataFrame.cummin : Return cumulative minimum over DataFrame axis.
DataFrame.cumsum : Return cumulative sum over DataFrame axis.
DataFrame.cumprod : Return cumulative product over DataFrame axis.

Examples
--------
**Series**

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumsum()
0    2.0
1    NaN
2    7.0
3    6.0
4    6.0
dtype: float64

To include NA values in the operation, use ``skipna=False``

>>> s.cumsum(skipna=False)
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

**DataFrame**

>>> df = pd.DataFrame([[2.0, 1.0],
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the sum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.

>>> df.cumsum()
     A    B
0  2.0  1.0
1  5.0  NaN
2  6.0  1.0

To iterate over columns and find the sum in each row,
use ``axis=1``

>>> df.cumsum(axis=1)
     A    B
0  2.0  3.0
1  3.0  NaN
2  1.0  1.0


41. describe
        Generate descriptive statistics.

        Descriptive statistics include those that summarize the central
        tendency, dispersion and shape of a
        dataset's distribution, excluding ``NaN`` values.

        Analyzes both numeric and object series, as well
        as ``DataFrame`` column sets of mixed data types. The output
        will vary depending on what is provided. Refer to the notes
        below for more detail.

        Parameters
        ----------
        percentiles : list-like of numbers, optional
            The percentiles to include in the output. All should
            fall between 0 and 1. The default is
            ``[.25, .5, .75]``, which returns the 25th, 50th, and
            75th percentiles.
        include : 'all', list-like of dtypes or None (default), optional
            A white list of data types to include in the result. Ignored
            for ``Series``. Here are the options:

            - 'all' : All columns of the input will be included in the output.
            - A list-like of dtypes : Limits the results to the
              provided data types.
              To limit the result to numeric types submit
              ``numpy.number``. To limit it instead to object columns submit
              the ``numpy.object`` data type. Strings
              can also be used in the style of
              ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To
              select pandas categorical columns, use ``'category'``
            - None (default) : The result will include all numeric columns.
        exclude : list-like of dtypes or None (default), optional,
            A black list of data types to omit from the result. Ignored
            for ``Series``. Here are the options:

            - A list-like of dtypes : Excludes the provided data types
              from the result. To exclude numeric types submit
              ``numpy.number``. To exclude object columns submit the data
              type ``numpy.object``. Strings can also be used in the style of
              ``select_dtypes`` (e.g. ``df.describe(exclude=['O'])``). To
              exclude pandas categorical columns, use ``'category'``
            - None (default) : The result will exclude nothing.
        datetime_is_numeric : bool, default False
            Whether to treat datetime dtypes as numeric. This affects statistics
            calculated for the column. For DataFrame input, this also
            controls whether datetime columns are included by default.

            .. versionadded:: 1.1.0

        Returns
        -------
        Series or DataFrame
            Summary statistics of the Series or Dataframe provided.

        See Also
        --------
        DataFrame.count: Count number of non-NA/null observations.
        DataFrame.max: Maximum of the values in the object.
        DataFrame.min: Minimum of the values in the object.
        DataFrame.mean: Mean of the values.
        DataFrame.std: Standard deviation of the observations.
        DataFrame.select_dtypes: Subset of a DataFrame including/excluding
            columns based on their dtype.

        Notes
        -----
        For numeric data, the result's index will include ``count``,
        ``mean``, ``std``, ``min``, ``max`` as well as lower, ``50`` and
        upper percentiles. By default the lower percentile is ``25`` and the
        upper percentile is ``75``. The ``50`` percentile is the
        same as the median.

        For object data (e.g. strings or timestamps), the result's index
        will include ``count``, ``unique``, ``top``, and ``freq``. The ``top``
        is the most common value. The ``freq`` is the most common value's
        frequency. Timestamps also include the ``first`` and ``last`` items.

        If multiple object values have the highest count, then the
        ``count`` and ``top`` results will be arbitrarily chosen from
        among those with the highest count.

        For mixed data types provided via a ``DataFrame``, the default is to
        return only an analysis of numeric columns. If the dataframe consists
        only of object and categorical data without any numeric columns, the
        default is to return an analysis of both the object and categorical
        columns. If ``include='all'`` is provided as an option, the result
        will include a union of attributes of each type.

        The `include` and `exclude` parameters can be used to limit
        which columns in a ``DataFrame`` are analyzed for the output.
        The parameters are ignored when analyzing a ``Series``.

        Examples
        --------
        Describing a numeric ``Series``.

        >>> s = pd.Series([1, 2, 3])
        >>> s.describe()
        count    3.0
        mean     2.0
        std      1.0
        min      1.0
        25%      1.5
        50%      2.0
        75%      2.5
        max      3.0
        dtype: float64

        Describing a categorical ``Series``.

        >>> s = pd.Series(['a', 'a', 'b', 'c'])
        >>> s.describe()
        count     4
        unique    3
        top       a
        freq      2
        dtype: object

        Describing a timestamp ``Series``.

        >>> s = pd.Series([
        ...   np.datetime64("2000-01-01"),
        ...   np.datetime64("2010-01-01"),
        ...   np.datetime64("2010-01-01")
        ... ])
        >>> s.describe(datetime_is_numeric=True)
        count                      3
        mean     2006-09-01 08:00:00
        min      2000-01-01 00:00:00
        25%      2004-12-31 12:00:00
        50%      2010-01-01 00:00:00
        75%      2010-01-01 00:00:00
        max      2010-01-01 00:00:00
        dtype: object

        Describing a ``DataFrame``. By default only numeric fields
        are returned.

        >>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']),
        ...                    'numeric': [1, 2, 3],
        ...                    'object': ['a', 'b', 'c']
        ...                   })
        >>> df.describe()
               numeric
        count      3.0
        mean       2.0
        std        1.0
        min        1.0
        25%        1.5
        50%        2.0
        75%        2.5
        max        3.0

        Describing all columns of a ``DataFrame`` regardless of data type.

        >>> df.describe(include='all')  # doctest: +SKIP
               categorical  numeric object
        count            3      3.0      3
        unique           3      NaN      3
        top              f      NaN      a
        freq             1      NaN      1
        mean           NaN      2.0    NaN
        std            NaN      1.0    NaN
        min            NaN      1.0    NaN
        25%            NaN      1.5    NaN
        50%            NaN      2.0    NaN
        75%            NaN      2.5    NaN
        max            NaN      3.0    NaN

        Describing a column from a ``DataFrame`` by accessing it as
        an attribute.

        >>> df.numeric.describe()
        count    3.0
        mean     2.0
        std      1.0
        min      1.0
        25%      1.5
        50%      2.0
        75%      2.5
        max      3.0
        Name: numeric, dtype: float64

        Including only numeric columns in a ``DataFrame`` description.

        >>> df.describe(include=[np.number])
               numeric
        count      3.0
        mean       2.0
        std        1.0
        min        1.0
        25%        1.5
        50%        2.0
        75%        2.5
        max        3.0

        Including only string columns in a ``DataFrame`` description.

        >>> df.describe(include=[object])  # doctest: +SKIP
               object
        count       3
        unique      3
        top         a
        freq        1

        Including only categorical columns from a ``DataFrame`` description.

        >>> df.describe(include=['category'])
               categorical
        count            3
        unique           3
        top              d
        freq             1

        Excluding numeric columns from a ``DataFrame`` description.

        >>> df.describe(exclude=[np.number])  # doctest: +SKIP
               categorical object
        count            3      3
        unique           3      3
        top              f      a
        freq             1      1

        Excluding object columns from a ``DataFrame`` description.

        >>> df.describe(exclude=[object])  # doctest: +SKIP
               categorical  numeric
        count            3      3.0
        unique           3      NaN
        top              f      NaN
        freq             1      NaN
        mean           NaN      2.0
        std            NaN      1.0
        min            NaN      1.0
        25%            NaN      1.5
        50%            NaN      2.0
        75%            NaN      2.5
        max            NaN      3.0
        

42. diff
First discrete difference of element.

Calculates the difference of a DataFrame element compared with another
element in the DataFrame (default is element in previous row).

Parameters
----------
periods : int, default 1
    Periods to shift for calculating difference, accepts negative
    values.
axis : {0 or 'index', 1 or 'columns'}, default 0
    Take difference over rows (0) or columns (1).

Returns
-------
DataFrame
    First differences of the Series.

See Also
--------
DataFrame.pct_change: Percent change over given number of periods.
DataFrame.shift: Shift index by desired number of periods with an
    optional time freq.
Series.diff: First discrete difference of object.

Notes
-----
For boolean dtypes, this uses :meth:`operator.xor` rather than
:meth:`operator.sub`.
The result is calculated according to current dtype in DataFrame,
however dtype of the result is always float64.

Examples
--------

Difference with previous row

>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],
...                    'b': [1, 1, 2, 3, 5, 8],
...                    'c': [1, 4, 9, 16, 25, 36]})
>>> df
   a  b   c
0  1  1   1
1  2  1   4
2  3  2   9
3  4  3  16
4  5  5  25
5  6  8  36

>>> df.diff()
     a    b     c
0  NaN  NaN   NaN
1  1.0  0.0   3.0
2  1.0  1.0   5.0
3  1.0  1.0   7.0
4  1.0  2.0   9.0
5  1.0  3.0  11.0

Difference with previous column

>>> df.diff(axis=1)
    a  b   c
0 NaN  0   0
1 NaN -1   3
2 NaN -1   7
3 NaN -1  13
4 NaN  0  20
5 NaN  2  28

Difference with 3rd previous row

>>> df.diff(periods=3)
     a    b     c
0  NaN  NaN   NaN
1  NaN  NaN   NaN
2  NaN  NaN   NaN
3  3.0  2.0  15.0
4  3.0  4.0  21.0
5  3.0  6.0  27.0

Difference with following row

>>> df.diff(periods=-1)
     a    b     c
0 -1.0  0.0  -3.0
1 -1.0 -1.0  -5.0
2 -1.0 -1.0  -7.0
3 -1.0 -2.0  -9.0
4 -1.0 -3.0 -11.0
5  NaN  NaN   NaN

Overflow in input dtype

>>> df = pd.DataFrame({'a': [1, 0]}, dtype=np.uint8)
>>> df.diff()
       a
0    NaN
1  255.0


43. div
Get Floating division of dataframe and other, element-wise (binary operator `truediv`).

Equivalent to ``dataframe / other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rtruediv`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


44. divide
Get Floating division of dataframe and other, element-wise (binary operator `truediv`).

Equivalent to ``dataframe / other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rtruediv`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


45. dot
        Compute the matrix multiplication between the DataFrame and other.

        This method computes the matrix product between the DataFrame and the
        values of an other Series, DataFrame or a numpy array.

        It can also be called using ``self @ other`` in Python >= 3.5.

        Parameters
        ----------
        other : Series, DataFrame or array-like
            The other object to compute the matrix product with.

        Returns
        -------
        Series or DataFrame
            If other is a Series, return the matrix product between self and
            other as a Series. If other is a DataFrame or a numpy.array, return
            the matrix product of self and other in a DataFrame of a np.array.

        See Also
        --------
        Series.dot: Similar method for Series.

        Notes
        -----
        The dimensions of DataFrame and other must be compatible in order to
        compute the matrix multiplication. In addition, the column names of
        DataFrame and the index of other must contain the same values, as they
        will be aligned prior to the multiplication.

        The dot method for Series computes the inner product, instead of the
        matrix product here.

        Examples
        --------
        Here we multiply a DataFrame with a Series.

        >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]])
        >>> s = pd.Series([1, 1, 2, 1])
        >>> df.dot(s)
        0    -4
        1     5
        dtype: int64

        Here we multiply a DataFrame with another DataFrame.

        >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]])
        >>> df.dot(other)
            0   1
        0   1   4
        1   2   2

        Note that the dot method give the same result as @

        >>> df @ other
            0   1
        0   1   4
        1   2   2

        The dot method works also if other is an np.array.

        >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]])
        >>> df.dot(arr)
            0   1
        0   1   4
        1   2   2

        Note how shuffling of the objects does not change the result.

        >>> s2 = s.reindex([1, 0, 2, 3])
        >>> df.dot(s2)
        0    -4
        1     5
        dtype: int64
        

46. drop
        Drop specified labels from rows or columns.

        Remove rows or columns by specifying label names and corresponding
        axis, or by specifying directly index or column names. When using a
        multi-index, labels on different levels can be removed by specifying
        the level. See the `user guide <advanced.shown_levels>`
        for more information about the now unused levels.

        Parameters
        ----------
        labels : single label or list-like
            Index or column labels to drop. A tuple will be used as a single
            label and not treated as a list-like.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Whether to drop labels from the index (0 or 'index') or
            columns (1 or 'columns').
        index : single label or list-like
            Alternative to specifying axis (``labels, axis=0``
            is equivalent to ``index=labels``).
        columns : single label or list-like
            Alternative to specifying axis (``labels, axis=1``
            is equivalent to ``columns=labels``).
        level : int or level name, optional
            For MultiIndex, level from which the labels will be removed.
        inplace : bool, default False
            If False, return a copy. Otherwise, do operation
            inplace and return None.
        errors : {'ignore', 'raise'}, default 'raise'
            If 'ignore', suppress error and only existing labels are
            dropped.

        Returns
        -------
        DataFrame or None
            DataFrame without the removed index or column labels or
            None if ``inplace=True``.

        Raises
        ------
        KeyError
            If any of the labels is not found in the selected axis.

        See Also
        --------
        DataFrame.loc : Label-location based indexer for selection by label.
        DataFrame.dropna : Return DataFrame with labels on given axis omitted
            where (all or any) data are missing.
        DataFrame.drop_duplicates : Return DataFrame with duplicate rows
            removed, optionally only considering certain columns.
        Series.drop : Return Series with specified index labels removed.

        Examples
        --------
        >>> df = pd.DataFrame(np.arange(12).reshape(3, 4),
        ...                   columns=['A', 'B', 'C', 'D'])
        >>> df
           A  B   C   D
        0  0  1   2   3
        1  4  5   6   7
        2  8  9  10  11

        Drop columns

        >>> df.drop(['B', 'C'], axis=1)
           A   D
        0  0   3
        1  4   7
        2  8  11

        >>> df.drop(columns=['B', 'C'])
           A   D
        0  0   3
        1  4   7
        2  8  11

        Drop a row by index

        >>> df.drop([0, 1])
           A  B   C   D
        2  8  9  10  11

        Drop columns and/or rows of MultiIndex DataFrame

        >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
        ...                              ['speed', 'weight', 'length']],
        ...                      codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
        ...                             [0, 1, 2, 0, 1, 2, 0, 1, 2]])
        >>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
        ...                   data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
        ...                         [250, 150], [1.5, 0.8], [320, 250],
        ...                         [1, 0.8], [0.3, 0.2]])
        >>> df
                        big     small
        lama    speed   45.0    30.0
                weight  200.0   100.0
                length  1.5     1.0
        cow     speed   30.0    20.0
                weight  250.0   150.0
                length  1.5     0.8
        falcon  speed   320.0   250.0
                weight  1.0     0.8
                length  0.3     0.2

        Drop a specific index combination from the MultiIndex
        DataFrame, i.e., drop the combination ``'falcon'`` and
        ``'weight'``, which deletes only the corresponding row

        >>> df.drop(index=('falcon', 'weight'))
                        big     small
        lama    speed   45.0    30.0
                weight  200.0   100.0
                length  1.5     1.0
        cow     speed   30.0    20.0
                weight  250.0   150.0
                length  1.5     0.8
        falcon  speed   320.0   250.0
                length  0.3     0.2

        >>> df.drop(index='cow', columns='small')
                        big
        lama    speed   45.0
                weight  200.0
                length  1.5
        falcon  speed   320.0
                weight  1.0
                length  0.3

        >>> df.drop(index='length', level=1)
                        big     small
        lama    speed   45.0    30.0
                weight  200.0   100.0
        cow     speed   30.0    20.0
                weight  250.0   150.0
        falcon  speed   320.0   250.0
                weight  1.0     0.8
        

47. drop_duplicates
        Return DataFrame with duplicate rows removed.

        Considering certain columns is optional. Indexes, including time indexes
        are ignored.

        Parameters
        ----------
        subset : column label or sequence of labels, optional
            Only consider certain columns for identifying duplicates, by
            default use all of the columns.
        keep : {'first', 'last', False}, default 'first'
            Determines which duplicates (if any) to keep.
            - ``first`` : Drop duplicates except for the first occurrence.
            - ``last`` : Drop duplicates except for the last occurrence.
            - False : Drop all duplicates.
        inplace : bool, default False
            Whether to modify the DataFrame rather than creating a new one.
        ignore_index : bool, default False
            If True, the resulting axis will be labeled 0, 1, …, n - 1.

            .. versionadded:: 1.0.0

        Returns
        -------
        DataFrame or None
            DataFrame with duplicates removed or None if ``inplace=True``.

        See Also
        --------
        DataFrame.value_counts: Count unique combinations of columns.

        Examples
        --------
        Consider dataset containing ramen rating.

        >>> df = pd.DataFrame({
        ...     'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
        ...     'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
        ...     'rating': [4, 4, 3.5, 15, 5]
        ... })
        >>> df
            brand style  rating
        0  Yum Yum   cup     4.0
        1  Yum Yum   cup     4.0
        2  Indomie   cup     3.5
        3  Indomie  pack    15.0
        4  Indomie  pack     5.0

        By default, it removes duplicate rows based on all columns.

        >>> df.drop_duplicates()
            brand style  rating
        0  Yum Yum   cup     4.0
        2  Indomie   cup     3.5
        3  Indomie  pack    15.0
        4  Indomie  pack     5.0

        To remove duplicates on specific column(s), use ``subset``.

        >>> df.drop_duplicates(subset=['brand'])
            brand style  rating
        0  Yum Yum   cup     4.0
        2  Indomie   cup     3.5

        To remove duplicates and keep last occurrences, use ``keep``.

        >>> df.drop_duplicates(subset=['brand', 'style'], keep='last')
            brand style  rating
        1  Yum Yum   cup     4.0
        2  Indomie   cup     3.5
        4  Indomie  pack     5.0
        

48. droplevel
Return Series/DataFrame with requested index / column level(s) removed.

Parameters
----------
level : int, str, or list-like
    If a string is given, must be the name of a level
    If list-like, elements must be names or positional indexes
    of levels.

axis : {0 or 'index', 1 or 'columns'}, default 0
    Axis along which the level(s) is removed:

    * 0 or 'index': remove level(s) in column.
    * 1 or 'columns': remove level(s) in row.

    For `Series` this parameter is unused and defaults to 0.

Returns
-------
Series/DataFrame
    Series/DataFrame with requested index / column level(s) removed.

Examples
--------
>>> df = pd.DataFrame([
...     [1, 2, 3, 4],
...     [5, 6, 7, 8],
...     [9, 10, 11, 12]
... ]).set_index([0, 1]).rename_axis(['a', 'b'])

>>> df.columns = pd.MultiIndex.from_tuples([
...     ('c', 'e'), ('d', 'f')
... ], names=['level_1', 'level_2'])

>>> df
level_1   c   d
level_2   e   f
a b
1 2      3   4
5 6      7   8
9 10    11  12

>>> df.droplevel('a')
level_1   c   d
level_2   e   f
b
2        3   4
6        7   8
10      11  12

>>> df.droplevel('level_2', axis=1)
level_1   c   d
a b
1 2      3   4
5 6      7   8
9 10    11  12


49. dropna
        Remove missing values.

        See the :ref:`User Guide <missing_data>` for more on which values are
        considered missing, and how to work with missing data.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Determine if rows or columns which contain missing values are
            removed.

            * 0, or 'index' : Drop rows which contain missing values.
            * 1, or 'columns' : Drop columns which contain missing value.

            .. versionchanged:: 1.0.0

               Pass tuple or list to drop on multiple axes.
               Only a single axis is allowed.

        how : {'any', 'all'}, default 'any'
            Determine if row or column is removed from DataFrame, when we have
            at least one NA or all NA.

            * 'any' : If any NA values are present, drop that row or column.
            * 'all' : If all values are NA, drop that row or column.

        thresh : int, optional
            Require that many non-NA values. Cannot be combined with how.
        subset : column label or sequence of labels, optional
            Labels along other axis to consider, e.g. if you are dropping rows
            these would be a list of columns to include.
        inplace : bool, default False
            Whether to modify the DataFrame rather than creating a new one.

        Returns
        -------
        DataFrame or None
            DataFrame with NA entries dropped from it or None if ``inplace=True``.

        See Also
        --------
        DataFrame.isna: Indicate missing values.
        DataFrame.notna : Indicate existing (non-missing) values.
        DataFrame.fillna : Replace missing values.
        Series.dropna : Drop missing values.
        Index.dropna : Drop missing indices.

        Examples
        --------
        >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
        ...                    "toy": [np.nan, 'Batmobile', 'Bullwhip'],
        ...                    "born": [pd.NaT, pd.Timestamp("1940-04-25"),
        ...                             pd.NaT]})
        >>> df
               name        toy       born
        0    Alfred        NaN        NaT
        1    Batman  Batmobile 1940-04-25
        2  Catwoman   Bullwhip        NaT

        Drop the rows where at least one element is missing.

        >>> df.dropna()
             name        toy       born
        1  Batman  Batmobile 1940-04-25

        Drop the columns where at least one element is missing.

        >>> df.dropna(axis='columns')
               name
        0    Alfred
        1    Batman
        2  Catwoman

        Drop the rows where all elements are missing.

        >>> df.dropna(how='all')
               name        toy       born
        0    Alfred        NaN        NaT
        1    Batman  Batmobile 1940-04-25
        2  Catwoman   Bullwhip        NaT

        Keep only the rows with at least 2 non-NA values.

        >>> df.dropna(thresh=2)
               name        toy       born
        1    Batman  Batmobile 1940-04-25
        2  Catwoman   Bullwhip        NaT

        Define in which columns to look for missing values.

        >>> df.dropna(subset=['name', 'toy'])
               name        toy       born
        1    Batman  Batmobile 1940-04-25
        2  Catwoman   Bullwhip        NaT

        Keep the DataFrame with valid entries in the same variable.

        >>> df.dropna(inplace=True)
        >>> df
             name        toy       born
        1  Batman  Batmobile 1940-04-25
        

50. dtypes
    One-dimensional ndarray with axis labels (including time series).

    Labels need not be unique but must be a hashable type. The object
    supports both integer- and label-based indexing and provides a host of
    methods for performing operations involving the index. Statistical
    methods from ndarray have been overridden to automatically exclude
    missing data (currently represented as NaN).

    Operations between Series (+, -, /, \*, \*\*) align values based on their
    associated index values-- they need not be the same length. The result
    index will be the sorted union of the two indexes.

    Parameters
    ----------
    data : array-like, Iterable, dict, or scalar value
        Contains data stored in Series. If data is a dict, argument order is
        maintained.
    index : array-like or Index (1d)
        Values must be hashable and have the same length as `data`.
        Non-unique index values are allowed. Will default to
        RangeIndex (0, 1, 2, ..., n) if not provided. If data is dict-like
        and index is None, then the keys in the data are used as the index. If the
        index is not None, the resulting Series is reindexed with the index values.
    dtype : str, numpy.dtype, or ExtensionDtype, optional
        Data type for the output Series. If not specified, this will be
        inferred from `data`.
        See the :ref:`user guide <basics.dtypes>` for more usages.
    name : str, optional
        The name to give to the Series.
    copy : bool, default False
        Copy input data. Only affects Series or 1d ndarray input. See examples.

    Notes
    -----
    Please reference the :ref:`User Guide <basics.series>` for more information.

    Examples
    --------
    Constructing Series from a dictionary with an Index specified

    >>> d = {'a': 1, 'b': 2, 'c': 3}
    >>> ser = pd.Series(data=d, index=['a', 'b', 'c'])
    >>> ser
    a   1
    b   2
    c   3
    dtype: int64

    The keys of the dictionary match with the Index values, hence the Index
    values have no effect.

    >>> d = {'a': 1, 'b': 2, 'c': 3}
    >>> ser = pd.Series(data=d, index=['x', 'y', 'z'])
    >>> ser
    x   NaN
    y   NaN
    z   NaN
    dtype: float64

    Note that the Index is first build with the keys from the dictionary.
    After this the Series is reindexed with the given Index values, hence we
    get all NaN as a result.

    Constructing Series from a list with `copy=False`.

    >>> r = [1, 2]
    >>> ser = pd.Series(r, copy=False)
    >>> ser.iloc[0] = 999
    >>> r
    [1, 2]
    >>> ser
    0    999
    1      2
    dtype: int64

    Due to input data type the Series has a `copy` of
    the original data even though `copy=False`, so
    the data is unchanged.

    Constructing Series from a 1d ndarray with `copy=False`.

    >>> r = np.array([1, 2])
    >>> ser = pd.Series(r, copy=False)
    >>> ser.iloc[0] = 999
    >>> r
    array([999,   2])
    >>> ser
    0    999
    1      2
    dtype: int64

    Due to input data type the Series has a `view` on
    the original data, so
    the data is changed as well.
    

51. duplicated
        Return boolean Series denoting duplicate rows.

        Considering certain columns is optional.

        Parameters
        ----------
        subset : column label or sequence of labels, optional
            Only consider certain columns for identifying duplicates, by
            default use all of the columns.
        keep : {'first', 'last', False}, default 'first'
            Determines which duplicates (if any) to mark.

            - ``first`` : Mark duplicates as ``True`` except for the first occurrence.
            - ``last`` : Mark duplicates as ``True`` except for the last occurrence.
            - False : Mark all duplicates as ``True``.

        Returns
        -------
        Series
            Boolean series for each duplicated rows.

        See Also
        --------
        Index.duplicated : Equivalent method on index.
        Series.duplicated : Equivalent method on Series.
        Series.drop_duplicates : Remove duplicate values from Series.
        DataFrame.drop_duplicates : Remove duplicate values from DataFrame.

        Examples
        --------
        Consider dataset containing ramen rating.

        >>> df = pd.DataFrame({
        ...     'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
        ...     'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
        ...     'rating': [4, 4, 3.5, 15, 5]
        ... })
        >>> df
            brand style  rating
        0  Yum Yum   cup     4.0
        1  Yum Yum   cup     4.0
        2  Indomie   cup     3.5
        3  Indomie  pack    15.0
        4  Indomie  pack     5.0

        By default, for each set of duplicated values, the first occurrence
        is set on False and all others on True.

        >>> df.duplicated()
        0    False
        1     True
        2    False
        3    False
        4    False
        dtype: bool

        By using 'last', the last occurrence of each set of duplicated values
        is set on False and all others on True.

        >>> df.duplicated(keep='last')
        0     True
        1    False
        2    False
        3    False
        4    False
        dtype: bool

        By setting ``keep`` on False, all duplicates are True.

        >>> df.duplicated(keep=False)
        0     True
        1     True
        2    False
        3    False
        4    False
        dtype: bool

        To find duplicates on specific column(s), use ``subset``.

        >>> df.duplicated(subset=['brand'])
        0    False
        1     True
        2    False
        3     True
        4     True
        dtype: bool
        

52. empty
bool(x) -> bool

Returns True when the argument x is true, False otherwise.
The builtins True and False are the only two instances of the class bool.
The class bool is a subclass of the class int, and cannot be subclassed.

53. eq
Get Equal to of dataframe and other, element-wise (binary operator `eq`).

Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.

Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.

Parameters
----------
other : scalar, sequence, Series, or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
    Whether to compare by the index (0 or 'index') or columns
    (1 or 'columns').
level : int or label
    Broadcast across a level, matching Index values on the passed
    MultiIndex level.

Returns
-------
DataFrame of bool
    Result of the comparison.

See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
    or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
    inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
    or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
    inequality elementwise.

Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).

Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False

>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150

>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225

>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False


54. equals
        Test whether two objects contain the same elements.

        This function allows two Series or DataFrames to be compared against
        each other to see if they have the same shape and elements. NaNs in
        the same location are considered equal.

        The row/column index do not need to have the same type, as long
        as the values are considered equal. Corresponding columns must be of
        the same dtype.

        Parameters
        ----------
        other : Series or DataFrame
            The other Series or DataFrame to be compared with the first.

        Returns
        -------
        bool
            True if all elements are the same in both objects, False
            otherwise.

        See Also
        --------
        Series.eq : Compare two Series objects of the same length
            and return a Series where each element is True if the element
            in each Series is equal, False otherwise.
        DataFrame.eq : Compare two DataFrame objects of the same shape and
            return a DataFrame where each element is True if the respective
            element in each DataFrame is equal, False otherwise.
        testing.assert_series_equal : Raises an AssertionError if left and
            right are not equal. Provides an easy interface to ignore
            inequality in dtypes, indexes and precision among others.
        testing.assert_frame_equal : Like assert_series_equal, but targets
            DataFrames.
        numpy.array_equal : Return True if two arrays have the same shape
            and elements, False otherwise.

        Examples
        --------
        >>> df = pd.DataFrame({1: [10], 2: [20]})
        >>> df
            1   2
        0  10  20

        DataFrames df and exactly_equal have the same types and values for
        their elements and column labels, which will return True.

        >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]})
        >>> exactly_equal
            1   2
        0  10  20
        >>> df.equals(exactly_equal)
        True

        DataFrames df and different_column_type have the same element
        types and values, but have different types for the column labels,
        which will still return True.

        >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]})
        >>> different_column_type
           1.0  2.0
        0   10   20
        >>> df.equals(different_column_type)
        True

        DataFrames df and different_data_type have different types for the
        same values for their elements, and will return False even though
        their column labels are the same values and types.

        >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]})
        >>> different_data_type
              1     2
        0  10.0  20.0
        >>> df.equals(different_data_type)
        False
        

55. eval
        Evaluate a string describing operations on DataFrame columns.

        Operates on columns only, not specific rows or elements.  This allows
        `eval` to run arbitrary code, which can make you vulnerable to code
        injection if you pass user input to this function.

        Parameters
        ----------
        expr : str
            The expression string to evaluate.
        inplace : bool, default False
            If the expression contains an assignment, whether to perform the
            operation inplace and mutate the existing DataFrame. Otherwise,
            a new DataFrame is returned.
        **kwargs
            See the documentation for :func:`eval` for complete details
            on the keyword arguments accepted by
            :meth:`~pandas.DataFrame.query`.

        Returns
        -------
        ndarray, scalar, pandas object, or None
            The result of the evaluation or None if ``inplace=True``.

        See Also
        --------
        DataFrame.query : Evaluates a boolean expression to query the columns
            of a frame.
        DataFrame.assign : Can evaluate an expression or function to create new
            values for a column.
        eval : Evaluate a Python expression as a string using various
            backends.

        Notes
        -----
        For more details see the API documentation for :func:`~eval`.
        For detailed examples see :ref:`enhancing performance with eval
        <enhancingperf.eval>`.

        Examples
        --------
        >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})
        >>> df
           A   B
        0  1  10
        1  2   8
        2  3   6
        3  4   4
        4  5   2
        >>> df.eval('A + B')
        0    11
        1    10
        2     9
        3     8
        4     7
        dtype: int64

        Assignment is allowed though by default the original DataFrame is not
        modified.

        >>> df.eval('C = A + B')
           A   B   C
        0  1  10  11
        1  2   8  10
        2  3   6   9
        3  4   4   8
        4  5   2   7
        >>> df
           A   B
        0  1  10
        1  2   8
        2  3   6
        3  4   4
        4  5   2

        Use ``inplace=True`` to modify the original DataFrame.

        >>> df.eval('C = A + B', inplace=True)
        >>> df
           A   B   C
        0  1  10  11
        1  2   8  10
        2  3   6   9
        3  4   4   8
        4  5   2   7

        Multiple columns can be assigned to using multi-line expressions:

        >>> df.eval(
        ...     '''
        ... C = A + B
        ... D = A - B
        ... '''
        ... )
           A   B   C  D
        0  1  10  11 -9
        1  2   8  10 -6
        2  3   6   9 -3
        3  4   4   8  0
        4  5   2   7  3
        

56. ewm
Provide exponentially weighted (EW) calculations.

Exactly one of ``com``, ``span``, ``halflife``, or ``alpha`` must be
provided if ``times`` is not provided. If ``times`` is provided,
``halflife`` and one of ``com``, ``span`` or ``alpha`` may be provided.

Parameters
----------
com : float, optional
    Specify decay in terms of center of mass

    :math:`\alpha = 1 / (1 + com)`, for :math:`com \geq 0`.

span : float, optional
    Specify decay in terms of span

    :math:`\alpha = 2 / (span + 1)`, for :math:`span \geq 1`.

halflife : float, str, timedelta, optional
    Specify decay in terms of half-life

    :math:`\alpha = 1 - \exp\left(-\ln(2) / halflife\right)`, for
    :math:`halflife > 0`.

    If ``times`` is specified, a timedelta convertible unit over which an
    observation decays to half its value. Only applicable to ``mean()``,
    and halflife value will not apply to the other functions.

    .. versionadded:: 1.1.0

alpha : float, optional
    Specify smoothing factor :math:`\alpha` directly

    :math:`0 < \alpha \leq 1`.

min_periods : int, default 0
    Minimum number of observations in window required to have a value;
    otherwise, result is ``np.nan``.

adjust : bool, default True
    Divide by decaying adjustment factor in beginning periods to account
    for imbalance in relative weightings (viewing EWMA as a moving average).

    - When ``adjust=True`` (default), the EW function is calculated using weights
      :math:`w_i = (1 - \alpha)^i`. For example, the EW moving average of the series
      [:math:`x_0, x_1, ..., x_t`] would be:

    .. math::
        y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 -
        \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}

    - When ``adjust=False``, the exponentially weighted function is calculated
      recursively:

    .. math::
        \begin{split}
            y_0 &= x_0\\
            y_t &= (1 - \alpha) y_{t-1} + \alpha x_t,
        \end{split}
ignore_na : bool, default False
    Ignore missing values when calculating weights.

    - When ``ignore_na=False`` (default), weights are based on absolute positions.
      For example, the weights of :math:`x_0` and :math:`x_2` used in calculating
      the final weighted average of [:math:`x_0`, None, :math:`x_2`] are
      :math:`(1-\alpha)^2` and :math:`1` if ``adjust=True``, and
      :math:`(1-\alpha)^2` and :math:`\alpha` if ``adjust=False``.

    - When ``ignore_na=True``, weights are based
      on relative positions. For example, the weights of :math:`x_0` and :math:`x_2`
      used in calculating the final weighted average of
      [:math:`x_0`, None, :math:`x_2`] are :math:`1-\alpha` and :math:`1` if
      ``adjust=True``, and :math:`1-\alpha` and :math:`\alpha` if ``adjust=False``.

axis : {0, 1}, default 0
    If ``0`` or ``'index'``, calculate across the rows.

    If ``1`` or ``'columns'``, calculate across the columns.

    For `Series` this parameter is unused and defaults to 0.

times : str, np.ndarray, Series, default None

    .. versionadded:: 1.1.0

    Only applicable to ``mean()``.

    Times corresponding to the observations. Must be monotonically increasing and
    ``datetime64[ns]`` dtype.

    If 1-D array like, a sequence with the same shape as the observations.

    .. deprecated:: 1.4.0
        If str, the name of the column in the DataFrame representing the times.

method : str {'single', 'table'}, default 'single'
    .. versionadded:: 1.4.0

    Execute the rolling operation per single column or row (``'single'``)
    or over the entire object (``'table'``).

    This argument is only implemented when specifying ``engine='numba'``
    in the method call.

    Only applicable to ``mean()``

Returns
-------
``ExponentialMovingWindow`` subclass

See Also
--------
rolling : Provides rolling window calculations.
expanding : Provides expanding transformations.

Notes
-----
See :ref:`Windowing Operations <window.exponentially_weighted>`
for further usage details and examples.

Examples
--------
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
     B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0

>>> df.ewm(com=0.5).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213
>>> df.ewm(alpha=2 / 3).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213

**adjust**

>>> df.ewm(com=0.5, adjust=True).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213
>>> df.ewm(com=0.5, adjust=False).mean()
          B
0  0.000000
1  0.666667
2  1.555556
3  1.555556
4  3.650794

**ignore_na**

>>> df.ewm(com=0.5, ignore_na=True).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.225000
>>> df.ewm(com=0.5, ignore_na=False).mean()
          B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213

**times**

Exponentially weighted mean with weights calculated with a timedelta ``halflife``
relative to ``times``.

>>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17']
>>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean()
          B
0  0.000000
1  0.585786
2  1.523889
3  1.523889
4  3.233686


57. expanding
Provide expanding window calculations.

Parameters
----------
min_periods : int, default 1
    Minimum number of observations in window required to have a value;
    otherwise, result is ``np.nan``.

center : bool, default False
    If False, set the window labels as the right edge of the window index.

    If True, set the window labels as the center of the window index.

    .. deprecated:: 1.1.0

axis : int or str, default 0
    If ``0`` or ``'index'``, roll across the rows.

    If ``1`` or ``'columns'``, roll across the columns.

    For `Series` this parameter is unused and defaults to 0.

method : str {'single', 'table'}, default 'single'
    Execute the rolling operation per single column or row (``'single'``)
    or over the entire object (``'table'``).

    This argument is only implemented when specifying ``engine='numba'``
    in the method call.

    .. versionadded:: 1.3.0

Returns
-------
``Expanding`` subclass

See Also
--------
rolling : Provides rolling window calculations.
ewm : Provides exponential weighted functions.

Notes
-----
See :ref:`Windowing Operations <window.expanding>` for further usage details
and examples.

Examples
--------
>>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]})
>>> df
     B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0

**min_periods**

Expanding sum with 1 vs 3 observations needed to calculate a value.

>>> df.expanding(1).sum()
     B
0  0.0
1  1.0
2  3.0
3  3.0
4  7.0
>>> df.expanding(3).sum()
     B
0  NaN
1  NaN
2  3.0
3  3.0
4  7.0


58. explode
        Transform each element of a list-like to a row, replicating index values.

        .. versionadded:: 0.25.0

        Parameters
        ----------
        column : IndexLabel
            Column(s) to explode.
            For multiple columns, specify a non-empty list with each element
            be str or tuple, and all specified columns their list-like data
            on same row of the frame must have matching length.

            .. versionadded:: 1.3.0
                Multi-column explode

        ignore_index : bool, default False
            If True, the resulting index will be labeled 0, 1, …, n - 1.

            .. versionadded:: 1.1.0

        Returns
        -------
        DataFrame
            Exploded lists to rows of the subset columns;
            index will be duplicated for these rows.

        Raises
        ------
        ValueError :
            * If columns of the frame are not unique.
            * If specified columns to explode is empty list.
            * If specified columns to explode have not matching count of
              elements rowwise in the frame.

        See Also
        --------
        DataFrame.unstack : Pivot a level of the (necessarily hierarchical)
            index labels.
        DataFrame.melt : Unpivot a DataFrame from wide format to long format.
        Series.explode : Explode a DataFrame from list-like columns to long format.

        Notes
        -----
        This routine will explode list-likes including lists, tuples, sets,
        Series, and np.ndarray. The result dtype of the subset rows will
        be object. Scalars will be returned unchanged, and empty list-likes will
        result in a np.nan for that row. In addition, the ordering of rows in the
        output will be non-deterministic when exploding sets.

        Reference :ref:`the user guide <reshaping.explode>` for more examples.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]],
        ...                    'B': 1,
        ...                    'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]})
        >>> df
                   A  B          C
        0  [0, 1, 2]  1  [a, b, c]
        1        foo  1        NaN
        2         []  1         []
        3     [3, 4]  1     [d, e]

        Single-column explode.

        >>> df.explode('A')
             A  B          C
        0    0  1  [a, b, c]
        0    1  1  [a, b, c]
        0    2  1  [a, b, c]
        1  foo  1        NaN
        2  NaN  1         []
        3    3  1     [d, e]
        3    4  1     [d, e]

        Multi-column explode.

        >>> df.explode(list('AC'))
             A  B    C
        0    0  1    a
        0    1  1    b
        0    2  1    c
        1  foo  1  NaN
        2  NaN  1  NaN
        3    3  1    d
        3    4  1    e
        

59. ffill
None

60. fillna
Fill NA/NaN values using the specified method.

Parameters
----------
value : scalar, dict, Series, or DataFrame
    Value to use to fill holes (e.g. 0), alternately a
    dict/Series/DataFrame of values specifying which value to use for
    each index (for a Series) or column (for a DataFrame).  Values not
    in the dict/Series/DataFrame will not be filled. This value cannot
    be a list.
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
    Method to use for filling holes in reindexed Series
    pad / ffill: propagate last valid observation forward to next valid
    backfill / bfill: use next valid observation to fill gap.
axis : {0 or 'index', 1 or 'columns'}
    Axis along which to fill missing values. For `Series`
    this parameter is unused and defaults to 0.
inplace : bool, default False
    If True, fill in-place. Note: this will modify any
    other views on this object (e.g., a no-copy slice for a column in a
    DataFrame).
limit : int, default None
    If method is specified, this is the maximum number of consecutive
    NaN values to forward/backward fill. In other words, if there is
    a gap with more than this number of consecutive NaNs, it will only
    be partially filled. If method is not specified, this is the
    maximum number of entries along the entire axis where NaNs will be
    filled. Must be greater than 0 if not None.
downcast : dict, default is None
    A dict of item->dtype of what to downcast if possible,
    or the string 'infer' which will try to downcast to an appropriate
    equal type (e.g. float64 to int64 if possible).

Returns
-------
DataFrame or None
    Object with missing values filled or None if ``inplace=True``.

See Also
--------
interpolate : Fill NaN values using interpolation.
reindex : Conform object to new index.
asfreq : Convert TimeSeries to specified frequency.

Examples
--------
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
...                    [3, 4, np.nan, 1],
...                    [np.nan, np.nan, np.nan, np.nan],
...                    [np.nan, 3, np.nan, 4]],
...                   columns=list("ABCD"))
>>> df
     A    B   C    D
0  NaN  2.0 NaN  0.0
1  3.0  4.0 NaN  1.0
2  NaN  NaN NaN  NaN
3  NaN  3.0 NaN  4.0

Replace all NaN elements with 0s.

>>> df.fillna(0)
     A    B    C    D
0  0.0  2.0  0.0  0.0
1  3.0  4.0  0.0  1.0
2  0.0  0.0  0.0  0.0
3  0.0  3.0  0.0  4.0

We can also propagate non-null values forward or backward.

>>> df.fillna(method="ffill")
     A    B   C    D
0  NaN  2.0 NaN  0.0
1  3.0  4.0 NaN  1.0
2  3.0  4.0 NaN  1.0
3  3.0  3.0 NaN  4.0

Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1,
2, and 3 respectively.

>>> values = {"A": 0, "B": 1, "C": 2, "D": 3}
>>> df.fillna(value=values)
     A    B    C    D
0  0.0  2.0  2.0  0.0
1  3.0  4.0  2.0  1.0
2  0.0  1.0  2.0  3.0
3  0.0  3.0  2.0  4.0

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1)
     A    B    C    D
0  0.0  2.0  2.0  0.0
1  3.0  4.0  NaN  1.0
2  NaN  1.0  NaN  3.0
3  NaN  3.0  NaN  4.0

When filling using a DataFrame, replacement happens along
the same column names and same indices

>>> df2 = pd.DataFrame(np.zeros((4, 4)), columns=list("ABCE"))
>>> df.fillna(df2)
     A    B    C    D
0  0.0  2.0  0.0  0.0
1  3.0  4.0  0.0  1.0
2  0.0  0.0  0.0  NaN
3  0.0  3.0  0.0  4.0

Note that column D is not affected since it is not present in df2.


61. filter
        Subset the dataframe rows or columns according to the specified index labels.

        Note that this routine does not filter a dataframe on its
        contents. The filter is applied to the labels of the index.

        Parameters
        ----------
        items : list-like
            Keep labels from axis which are in items.
        like : str
            Keep labels from axis for which "like in label == True".
        regex : str (regular expression)
            Keep labels from axis for which re.search(regex, label) == True.
        axis : {0 or ‘index’, 1 or ‘columns’, None}, default None
            The axis to filter on, expressed either as an index (int)
            or axis name (str). By default this is the info axis, 'columns' for
            DataFrame. For `Series` this parameter is unused and defaults to `None`.

        Returns
        -------
        same type as input object

        See Also
        --------
        DataFrame.loc : Access a group of rows and columns
            by label(s) or a boolean array.

        Notes
        -----
        The ``items``, ``like``, and ``regex`` parameters are
        enforced to be mutually exclusive.

        ``axis`` defaults to the info axis that is used when indexing
        with ``[]``.

        Examples
        --------
        >>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])),
        ...                   index=['mouse', 'rabbit'],
        ...                   columns=['one', 'two', 'three'])
        >>> df
                one  two  three
        mouse     1    2      3
        rabbit    4    5      6

        >>> # select columns by name
        >>> df.filter(items=['one', 'three'])
                 one  three
        mouse     1      3
        rabbit    4      6

        >>> # select columns by regular expression
        >>> df.filter(regex='e$', axis=1)
                 one  three
        mouse     1      3
        rabbit    4      6

        >>> # select rows containing 'bbi'
        >>> df.filter(like='bbi', axis=0)
                 one  two  three
        rabbit    4    5      6
        

62. first
        Select initial periods of time series data based on a date offset.

        When having a DataFrame with dates as index, this function can
        select the first few rows based on a date offset.

        Parameters
        ----------
        offset : str, DateOffset or dateutil.relativedelta
            The offset length of the data that will be selected. For instance,
            '1M' will display all the rows having their index within the first month.

        Returns
        -------
        Series or DataFrame
            A subset of the caller.

        Raises
        ------
        TypeError
            If the index is not  a :class:`DatetimeIndex`

        See Also
        --------
        last : Select final periods of time series based on a date offset.
        at_time : Select values at a particular time of the day.
        between_time : Select values between particular times of the day.

        Examples
        --------
        >>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
        >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
        >>> ts
                    A
        2018-04-09  1
        2018-04-11  2
        2018-04-13  3
        2018-04-15  4

        Get the rows for the first 3 days:

        >>> ts.first('3D')
                    A
        2018-04-09  1
        2018-04-11  2

        Notice the data for 3 first calendar days were returned, not the first
        3 days observed in the dataset, and therefore data for 2018-04-13 was
        not returned.
        

63. first_valid_index
Return index for first non-NA value or None, if no non-NA value is found.

Returns
-------
scalar : type of index

Notes
-----
If all elements are non-NA/null, returns None.
Also returns None for empty Series/DataFrame.


64. flags
    Flags that apply to pandas objects.

    .. versionadded:: 1.2.0

    Parameters
    ----------
    obj : Series or DataFrame
        The object these flags are associated with.
    allows_duplicate_labels : bool, default True
        Whether to allow duplicate labels in this object. By default,
        duplicate labels are permitted. Setting this to ``False`` will
        cause an :class:`errors.DuplicateLabelError` to be raised when
        `index` (or columns for DataFrame) is not unique, or any
        subsequent operation on introduces duplicates.
        See :ref:`duplicates.disallow` for more.

        .. warning::

           This is an experimental feature. Currently, many methods fail to
           propagate the ``allows_duplicate_labels`` value. In future versions
           it is expected that every method taking or returning one or more
           DataFrame or Series objects will propagate ``allows_duplicate_labels``.

    Notes
    -----
    Attributes can be set in two ways

    >>> df = pd.DataFrame()
    >>> df.flags
    <Flags(allows_duplicate_labels=True)>
    >>> df.flags.allows_duplicate_labels = False
    >>> df.flags
    <Flags(allows_duplicate_labels=False)>

    >>> df.flags['allows_duplicate_labels'] = True
    >>> df.flags
    <Flags(allows_duplicate_labels=True)>
    

65. floordiv
Get Integer division of dataframe and other, element-wise (binary operator `floordiv`).

Equivalent to ``dataframe // other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rfloordiv`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


66. from_dict
        Construct DataFrame from dict of array-like or dicts.

        Creates DataFrame object from dictionary by columns or by index
        allowing dtype specification.

        Parameters
        ----------
        data : dict
            Of the form {field : array-like} or {field : dict}.
        orient : {'columns', 'index', 'tight'}, default 'columns'
            The "orientation" of the data. If the keys of the passed dict
            should be the columns of the resulting DataFrame, pass 'columns'
            (default). Otherwise if the keys should be rows, pass 'index'.
            If 'tight', assume a dict with keys ['index', 'columns', 'data',
            'index_names', 'column_names'].

            .. versionadded:: 1.4.0
               'tight' as an allowed value for the ``orient`` argument

        dtype : dtype, default None
            Data type to force, otherwise infer.
        columns : list, default None
            Column labels to use when ``orient='index'``. Raises a ValueError
            if used with ``orient='columns'`` or ``orient='tight'``.

        Returns
        -------
        DataFrame

        See Also
        --------
        DataFrame.from_records : DataFrame from structured ndarray, sequence
            of tuples or dicts, or DataFrame.
        DataFrame : DataFrame object creation using constructor.
        DataFrame.to_dict : Convert the DataFrame to a dictionary.

        Examples
        --------
        By default the keys of the dict become the DataFrame columns:

        >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
        >>> pd.DataFrame.from_dict(data)
           col_1 col_2
        0      3     a
        1      2     b
        2      1     c
        3      0     d

        Specify ``orient='index'`` to create the DataFrame using dictionary
        keys as rows:

        >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
        >>> pd.DataFrame.from_dict(data, orient='index')
               0  1  2  3
        row_1  3  2  1  0
        row_2  a  b  c  d

        When using the 'index' orientation, the column names can be
        specified manually:

        >>> pd.DataFrame.from_dict(data, orient='index',
        ...                        columns=['A', 'B', 'C', 'D'])
               A  B  C  D
        row_1  3  2  1  0
        row_2  a  b  c  d

        Specify ``orient='tight'`` to create the DataFrame using a 'tight'
        format:

        >>> data = {'index': [('a', 'b'), ('a', 'c')],
        ...         'columns': [('x', 1), ('y', 2)],
        ...         'data': [[1, 3], [2, 4]],
        ...         'index_names': ['n1', 'n2'],
        ...         'column_names': ['z1', 'z2']}
        >>> pd.DataFrame.from_dict(data, orient='tight')
        z1     x  y
        z2     1  2
        n1 n2
        a  b   1  3
           c   2  4
        

67. from_records
        Convert structured or record ndarray to DataFrame.

        Creates a DataFrame object from a structured ndarray, sequence of
        tuples or dicts, or DataFrame.

        Parameters
        ----------
        data : structured ndarray, sequence of tuples or dicts, or DataFrame
            Structured input data.
        index : str, list of fields, array-like
            Field of array to use as the index, alternately a specific set of
            input labels to use.
        exclude : sequence, default None
            Columns or fields to exclude.
        columns : sequence, default None
            Column names to use. If the passed data do not have names
            associated with them, this argument provides names for the
            columns. Otherwise this argument indicates the order of the columns
            in the result (any names not found in the data will become all-NA
            columns).
        coerce_float : bool, default False
            Attempt to convert values of non-string, non-numeric objects (like
            decimal.Decimal) to floating point, useful for SQL result sets.
        nrows : int, default None
            Number of rows to read if data is an iterator.

        Returns
        -------
        DataFrame

        See Also
        --------
        DataFrame.from_dict : DataFrame from dict of array-like or dicts.
        DataFrame : DataFrame object creation using constructor.

        Examples
        --------
        Data can be provided as a structured ndarray:

        >>> data = np.array([(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')],
        ...                 dtype=[('col_1', 'i4'), ('col_2', 'U1')])
        >>> pd.DataFrame.from_records(data)
           col_1 col_2
        0      3     a
        1      2     b
        2      1     c
        3      0     d

        Data can be provided as a list of dicts:

        >>> data = [{'col_1': 3, 'col_2': 'a'},
        ...         {'col_1': 2, 'col_2': 'b'},
        ...         {'col_1': 1, 'col_2': 'c'},
        ...         {'col_1': 0, 'col_2': 'd'}]
        >>> pd.DataFrame.from_records(data)
           col_1 col_2
        0      3     a
        1      2     b
        2      1     c
        3      0     d

        Data can be provided as a list of tuples with corresponding columns:

        >>> data = [(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')]
        >>> pd.DataFrame.from_records(data, columns=['col_1', 'col_2'])
           col_1 col_2
        0      3     a
        1      2     b
        2      1     c
        3      0     d
        

68. ge
Get Greater than or equal to of dataframe and other, element-wise (binary operator `ge`).

Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.

Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.

Parameters
----------
other : scalar, sequence, Series, or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
    Whether to compare by the index (0 or 'index') or columns
    (1 or 'columns').
level : int or label
    Broadcast across a level, matching Index values on the passed
    MultiIndex level.

Returns
-------
DataFrame of bool
    Result of the comparison.

See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
    or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
    inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
    or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
    inequality elementwise.

Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).

Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False

>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150

>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225

>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False


69. get
        Get item from object for given key (ex: DataFrame column).

        Returns default value if not found.

        Parameters
        ----------
        key : object

        Returns
        -------
        value : same type as items contained in object

        Examples
        --------
        >>> df = pd.DataFrame(
        ...     [
        ...         [24.3, 75.7, "high"],
        ...         [31, 87.8, "high"],
        ...         [22, 71.6, "medium"],
        ...         [35, 95, "medium"],
        ...     ],
        ...     columns=["temp_celsius", "temp_fahrenheit", "windspeed"],
        ...     index=pd.date_range(start="2014-02-12", end="2014-02-15", freq="D"),
        ... )

        >>> df
                    temp_celsius  temp_fahrenheit windspeed
        2014-02-12          24.3             75.7      high
        2014-02-13          31.0             87.8      high
        2014-02-14          22.0             71.6    medium
        2014-02-15          35.0             95.0    medium

        >>> df.get(["temp_celsius", "windspeed"])
                    temp_celsius windspeed
        2014-02-12          24.3      high
        2014-02-13          31.0      high
        2014-02-14          22.0    medium
        2014-02-15          35.0    medium

        If the key isn't found, the default value will be used.

        >>> df.get(["temp_celsius", "temp_kelvin"], default="default_value")
        'default_value'
        

70. groupby
Group DataFrame using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the
object, applying a function, and combining the results. This can be
used to group large amounts of data and compute operations on these
groups.

Parameters
----------
by : mapping, function, label, or list of labels
    Used to determine the groups for the groupby.
    If ``by`` is a function, it's called on each value of the object's
    index. If a dict or Series is passed, the Series or dict VALUES
    will be used to determine the groups (the Series' values are first
    aligned; see ``.align()`` method). If a list or ndarray of length
    equal to the selected axis is passed (see the `groupby user guide
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#splitting-an-object-into-groups>`_),
    the values are used as-is to determine the groups. A label or list
    of labels may be passed to group by the columns in ``self``.
    Notice that a tuple is interpreted as a (single) key.
axis : {0 or 'index', 1 or 'columns'}, default 0
    Split along rows (0) or columns (1). For `Series` this parameter
    is unused and defaults to 0.
level : int, level name, or sequence of such, default None
    If the axis is a MultiIndex (hierarchical), group by a particular
    level or levels. Do not specify both ``by`` and ``level``.
as_index : bool, default True
    For aggregated output, return object with group labels as the
    index. Only relevant for DataFrame input. as_index=False is
    effectively "SQL-style" grouped output.
sort : bool, default True
    Sort group keys. Get better performance by turning this off.
    Note this does not influence the order of observations within each
    group. Groupby preserves the order of rows within each group.
group_keys : bool, optional
    When calling apply and the ``by`` argument produces a like-indexed
    (i.e. :ref:`a transform <groupby.transform>`) result, add group keys to
    index to identify pieces. By default group keys are not included
    when the result's index (and column) labels match the inputs, and
    are included otherwise. This argument has no effect if the result produced
    is not like-indexed with respect to the input.

    .. versionchanged:: 1.5.0

       Warns that `group_keys` will no longer be ignored when the
       result from ``apply`` is a like-indexed Series or DataFrame.
       Specify ``group_keys`` explicitly to include the group keys or
       not.
squeeze : bool, default False
    Reduce the dimensionality of the return type if possible,
    otherwise return a consistent type.

    .. deprecated:: 1.1.0

observed : bool, default False
    This only applies if any of the groupers are Categoricals.
    If True: only show observed values for categorical groupers.
    If False: show all values for categorical groupers.
dropna : bool, default True
    If True, and if group keys contain NA values, NA values together
    with row/column will be dropped.
    If False, NA values will also be treated as the key in groups.

    .. versionadded:: 1.1.0

Returns
-------
DataFrameGroupBy
    Returns a groupby object that contains information about the groups.

See Also
--------
resample : Convenience method for frequency conversion and resampling
    of time series.

Notes
-----
See the `user guide
<https://pandas.pydata.org/pandas-docs/stable/groupby.html>`__ for more
detailed usage and examples, including splitting an object into groups,
iterating through groups, selecting a group, aggregation, and more.

Examples
--------
>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0
>>> df.groupby(['Animal']).mean()
        Max Speed
Animal
Falcon      375.0
Parrot       25.0

**Hierarchical Indexes**

We can groupby different levels of a hierarchical index
using the `level` parameter:

>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'],
...           ['Captive', 'Wild', 'Captive', 'Wild']]
>>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
>>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]},
...                   index=index)
>>> df
                Max Speed
Animal Type
Falcon Captive      390.0
       Wild         350.0
Parrot Captive       30.0
       Wild          20.0
>>> df.groupby(level=0).mean()
        Max Speed
Animal
Falcon      370.0
Parrot       25.0
>>> df.groupby(level="Type").mean()
         Max Speed
Type
Captive      210.0
Wild         185.0

We can also choose to include NA in group keys or not by setting
`dropna` parameter, the default setting is `True`.

>>> l = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]
>>> df = pd.DataFrame(l, columns=["a", "b", "c"])

>>> df.groupby(by=["b"]).sum()
    a   c
b
1.0 2   3
2.0 2   5

>>> df.groupby(by=["b"], dropna=False).sum()
    a   c
b
1.0 2   3
2.0 2   5
NaN 1   4

>>> l = [["a", 12, 12], [None, 12.3, 33.], ["b", 12.3, 123], ["a", 1, 1]]
>>> df = pd.DataFrame(l, columns=["a", "b", "c"])

>>> df.groupby(by="a").sum()
    b     c
a
a   13.0   13.0
b   12.3  123.0

>>> df.groupby(by="a", dropna=False).sum()
    b     c
a
a   13.0   13.0
b   12.3  123.0
NaN 12.3   33.0

When using ``.apply()``, use ``group_keys`` to include or exclude the group keys.
The ``group_keys`` argument defaults to ``True`` (include).

>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df.groupby("Animal", group_keys=True).apply(lambda x: x)
          Animal  Max Speed
Animal
Falcon 0  Falcon      380.0
       1  Falcon      370.0
Parrot 2  Parrot       24.0
       3  Parrot       26.0

>>> df.groupby("Animal", group_keys=False).apply(lambda x: x)
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0


71. gt
Get Greater than of dataframe and other, element-wise (binary operator `gt`).

Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.

Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.

Parameters
----------
other : scalar, sequence, Series, or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
    Whether to compare by the index (0 or 'index') or columns
    (1 or 'columns').
level : int or label
    Broadcast across a level, matching Index values on the passed
    MultiIndex level.

Returns
-------
DataFrame of bool
    Result of the comparison.

See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
    or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
    inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
    or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
    inequality elementwise.

Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).

Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False

>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150

>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225

>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False


72. head
        Return the first `n` rows.

        This function returns the first `n` rows for the object based
        on position. It is useful for quickly testing if your object
        has the right type of data in it.

        For negative values of `n`, this function returns all rows except
        the last `|n|` rows, equivalent to ``df[:n]``.

        If n is larger than the number of rows, this function returns all rows.

        Parameters
        ----------
        n : int, default 5
            Number of rows to select.

        Returns
        -------
        same type as caller
            The first `n` rows of the caller object.

        See Also
        --------
        DataFrame.tail: Returns the last `n` rows.

        Examples
        --------
        >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion',
        ...                    'monkey', 'parrot', 'shark', 'whale', 'zebra']})
        >>> df
              animal
        0  alligator
        1        bee
        2     falcon
        3       lion
        4     monkey
        5     parrot
        6      shark
        7      whale
        8      zebra

        Viewing the first 5 lines

        >>> df.head()
              animal
        0  alligator
        1        bee
        2     falcon
        3       lion
        4     monkey

        Viewing the first `n` lines (three in this case)

        >>> df.head(3)
              animal
        0  alligator
        1        bee
        2     falcon

        For negative values of `n`

        >>> df.head(-3)
              animal
        0  alligator
        1        bee
        2     falcon
        3       lion
        4     monkey
        5     parrot
        

73. hist
    Make a histogram of the DataFrame's columns.

    A `histogram`_ is a representation of the distribution of data.
    This function calls :meth:`matplotlib.pyplot.hist`, on each series in
    the DataFrame, resulting in one histogram per column.

    .. _histogram: https://en.wikipedia.org/wiki/Histogram

    Parameters
    ----------
    data : DataFrame
        The pandas object holding the data.
    column : str or sequence, optional
        If passed, will be used to limit data to a subset of columns.
    by : object, optional
        If passed, then used to form histograms for separate groups.
    grid : bool, default True
        Whether to show axis grid lines.
    xlabelsize : int, default None
        If specified changes the x-axis label size.
    xrot : float, default None
        Rotation of x axis labels. For example, a value of 90 displays the
        x labels rotated 90 degrees clockwise.
    ylabelsize : int, default None
        If specified changes the y-axis label size.
    yrot : float, default None
        Rotation of y axis labels. For example, a value of 90 displays the
        y labels rotated 90 degrees clockwise.
    ax : Matplotlib axes object, default None
        The axes to plot the histogram on.
    sharex : bool, default True if ax is None else False
        In case subplots=True, share x axis and set some x axis labels to
        invisible; defaults to True if ax is None otherwise False if an ax
        is passed in.
        Note that passing in both an ax and sharex=True will alter all x axis
        labels for all subplots in a figure.
    sharey : bool, default False
        In case subplots=True, share y axis and set some y axis labels to
        invisible.
    figsize : tuple, optional
        The size in inches of the figure to create. Uses the value in
        `matplotlib.rcParams` by default.
    layout : tuple, optional
        Tuple of (rows, columns) for the layout of the histograms.
    bins : int or sequence, default 10
        Number of histogram bins to be used. If an integer is given, bins + 1
        bin edges are calculated and returned. If bins is a sequence, gives
        bin edges, including left edge of first bin and right edge of last
        bin. In this case, bins is returned unmodified.

    backend : str, default None
        Backend to use instead of the backend specified in the option
        ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
        specify the ``plotting.backend`` for the whole session, set
        ``pd.options.plotting.backend``.

        .. versionadded:: 1.0.0

    legend : bool, default False
        Whether to show the legend.

        .. versionadded:: 1.1.0

    **kwargs
        All other plotting keyword arguments to be passed to
        :meth:`matplotlib.pyplot.hist`.

    Returns
    -------
    matplotlib.AxesSubplot or numpy.ndarray of them

    See Also
    --------
    matplotlib.pyplot.hist : Plot a histogram using matplotlib.

    Examples
    --------
    This example draws a histogram based on the length and width of
    some animals, displayed in three bins

    .. plot::
        :context: close-figs

        >>> df = pd.DataFrame({
        ...     'length': [1.5, 0.5, 1.2, 0.9, 3],
        ...     'width': [0.7, 0.2, 0.15, 0.2, 1.1]
        ...     }, index=['pig', 'rabbit', 'duck', 'chicken', 'horse'])
        >>> hist = df.hist(bins=3)
    

74. iat
Access a single value for a row/column pair by integer position.

Similar to ``iloc``, in that both provide integer-based lookups. Use
``iat`` if you only need to get or set a single value in a DataFrame
or Series.

Raises
------
IndexError
    When integer position is out of bounds.

See Also
--------
DataFrame.at : Access a single value for a row/column label pair.
DataFrame.loc : Access a group of rows and columns by label(s).
DataFrame.iloc : Access a group of rows and columns by integer position(s).

Examples
--------
>>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]],
...                   columns=['A', 'B', 'C'])
>>> df
    A   B   C
0   0   2   3
1   0   4   1
2  10  20  30

Get value at specified row/column pair

>>> df.iat[1, 2]
1

Set value at specified row/column pair

>>> df.iat[1, 2] = 10
>>> df.iat[1, 2]
10

Get value within a series

>>> df.loc[0].iat[1]
2


75. idxmax
    Return index of first occurrence of maximum over requested axis.

    NA/null values are excluded.

    Parameters
    ----------
    axis : {0 or 'index', 1 or 'columns'}, default 0
        The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
    skipna : bool, default True
        Exclude NA/null values. If an entire row/column is NA, the result
        will be NA.
    numeric_only : bool, default False
        Include only `float`, `int` or `boolean` data.

        .. versionadded:: 1.5.0

    Returns
    -------
    Series
        Indexes of maxima along the specified axis.

    Raises
    ------
    ValueError
        * If the row/column is empty

    See Also
    --------
    Series.idxmax : Return index of the maximum element.

    Notes
    -----
    This method is the DataFrame version of ``ndarray.argmax``.

    Examples
    --------
    Consider a dataset containing food consumption in Argentina.

    >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
    ...                    'co2_emissions': [37.2, 19.66, 1712]},
    ...                    index=['Pork', 'Wheat Products', 'Beef'])

    >>> df
                    consumption  co2_emissions
    Pork                  10.51         37.20
    Wheat Products       103.11         19.66
    Beef                  55.48       1712.00

    By default, it returns the index for the maximum value in each column.

    >>> df.idxmax()
    consumption     Wheat Products
    co2_emissions             Beef
    dtype: object

    To return the index for the maximum value in each row, use ``axis="columns"``.

    >>> df.idxmax(axis="columns")
    Pork              co2_emissions
    Wheat Products     consumption
    Beef              co2_emissions
    dtype: object


76. idxmin
    Return index of first occurrence of minimum over requested axis.

    NA/null values are excluded.

    Parameters
    ----------
    axis : {0 or 'index', 1 or 'columns'}, default 0
        The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
    skipna : bool, default True
        Exclude NA/null values. If an entire row/column is NA, the result
        will be NA.
    numeric_only : bool, default False
        Include only `float`, `int` or `boolean` data.

        .. versionadded:: 1.5.0

    Returns
    -------
    Series
        Indexes of minima along the specified axis.

    Raises
    ------
    ValueError
        * If the row/column is empty

    See Also
    --------
    Series.idxmin : Return index of the minimum element.

    Notes
    -----
    This method is the DataFrame version of ``ndarray.argmin``.

    Examples
    --------
    Consider a dataset containing food consumption in Argentina.

    >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
    ...                    'co2_emissions': [37.2, 19.66, 1712]},
    ...                    index=['Pork', 'Wheat Products', 'Beef'])

    >>> df
                    consumption  co2_emissions
    Pork                  10.51         37.20
    Wheat Products       103.11         19.66
    Beef                  55.48       1712.00

    By default, it returns the index for the minimum value in each column.

    >>> df.idxmin()
    consumption                Pork
    co2_emissions    Wheat Products
    dtype: object

    To return the index for the minimum value in each row, use ``axis="columns"``.

    >>> df.idxmin(axis="columns")
    Pork                consumption
    Wheat Products    co2_emissions
    Beef                consumption
    dtype: object


77. iloc
Purely integer-location based indexing for selection by position.

``.iloc[]`` is primarily integer position based (from ``0`` to
``length-1`` of the axis), but may also be used with a boolean
array.

Allowed inputs are:

- An integer, e.g. ``5``.
- A list or array of integers, e.g. ``[4, 3, 0]``.
- A slice object with ints, e.g. ``1:7``.
- A boolean array.
- A ``callable`` function with one argument (the calling Series or
  DataFrame) and that returns valid output for indexing (one of the above).
  This is useful in method chains, when you don't have a reference to the
  calling object, but would like to base your selection on some value.
- A tuple of row and column indexes. The tuple elements consist of one of the
  above inputs, e.g. ``(0, 1)``.

``.iloc`` will raise ``IndexError`` if a requested indexer is
out-of-bounds, except *slice* indexers which allow out-of-bounds
indexing (this conforms with python/numpy *slice* semantics).

See more at :ref:`Selection by Position <indexing.integer>`.

See Also
--------
DataFrame.iat : Fast integer location scalar accessor.
DataFrame.loc : Purely label-location based indexer for selection by label.
Series.iloc : Purely integer-location based indexing for
               selection by position.

Examples
--------
>>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4},
...           {'a': 100, 'b': 200, 'c': 300, 'd': 400},
...           {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }]
>>> df = pd.DataFrame(mydict)
>>> df
      a     b     c     d
0     1     2     3     4
1   100   200   300   400
2  1000  2000  3000  4000

**Indexing just the rows**

With a scalar integer.

>>> type(df.iloc[0])
<class 'pandas.core.series.Series'>
>>> df.iloc[0]
a    1
b    2
c    3
d    4
Name: 0, dtype: int64

With a list of integers.

>>> df.iloc[[0]]
   a  b  c  d
0  1  2  3  4
>>> type(df.iloc[[0]])
<class 'pandas.core.frame.DataFrame'>

>>> df.iloc[[0, 1]]
     a    b    c    d
0    1    2    3    4
1  100  200  300  400

With a `slice` object.

>>> df.iloc[:3]
      a     b     c     d
0     1     2     3     4
1   100   200   300   400
2  1000  2000  3000  4000

With a boolean mask the same length as the index.

>>> df.iloc[[True, False, True]]
      a     b     c     d
0     1     2     3     4
2  1000  2000  3000  4000

With a callable, useful in method chains. The `x` passed
to the ``lambda`` is the DataFrame being sliced. This selects
the rows whose index label even.

>>> df.iloc[lambda x: x.index % 2 == 0]
      a     b     c     d
0     1     2     3     4
2  1000  2000  3000  4000

**Indexing both axes**

You can mix the indexer types for the index and columns. Use ``:`` to
select the entire axis.

With scalar integers.

>>> df.iloc[0, 1]
2

With lists of integers.

>>> df.iloc[[0, 2], [1, 3]]
      b     d
0     2     4
2  2000  4000

With `slice` objects.

>>> df.iloc[1:3, 0:3]
      a     b     c
1   100   200   300
2  1000  2000  3000

With a boolean array whose length matches the columns.

>>> df.iloc[:, [True, False, True, False]]
      a     c
0     1     3
1   100   300
2  1000  3000

With a callable function that expects the Series or DataFrame.

>>> df.iloc[:, lambda df: [0, 2]]
      a     c
0     1     3
1   100   300
2  1000  3000


78. index
    Immutable sequence used for indexing and alignment.

    The basic object storing axis labels for all pandas objects.

    Parameters
    ----------
    data : array-like (1-dimensional)
    dtype : NumPy dtype (default: object)
        If dtype is None, we find the dtype that best fits the data.
        If an actual dtype is provided, we coerce to that dtype if it's safe.
        Otherwise, an error will be raised.
    copy : bool
        Make a copy of input ndarray.
    name : object
        Name to be stored in the index.
    tupleize_cols : bool (default: True)
        When True, attempt to create a MultiIndex if possible.

    See Also
    --------
    RangeIndex : Index implementing a monotonic integer range.
    CategoricalIndex : Index of :class:`Categorical` s.
    MultiIndex : A multi-level, or hierarchical Index.
    IntervalIndex : An Index of :class:`Interval` s.
    DatetimeIndex : Index of datetime64 data.
    TimedeltaIndex : Index of timedelta64 data.
    PeriodIndex : Index of Period data.
    NumericIndex : Index of numpy int/uint/float data.
    Int64Index : Index of purely int64 labels (deprecated).
    UInt64Index : Index of purely uint64 labels (deprecated).
    Float64Index : Index of  purely float64 labels (deprecated).

    Notes
    -----
    An Index instance can **only** contain hashable objects

    Examples
    --------
    >>> pd.Index([1, 2, 3])
    Int64Index([1, 2, 3], dtype='int64')

    >>> pd.Index(list('abc'))
    Index(['a', 'b', 'c'], dtype='object')
    

79. infer_objects
        Attempt to infer better dtypes for object columns.

        Attempts soft conversion of object-dtyped
        columns, leaving non-object and unconvertible
        columns unchanged. The inference rules are the
        same as during normal Series/DataFrame construction.

        Returns
        -------
        converted : same type as input object

        See Also
        --------
        to_datetime : Convert argument to datetime.
        to_timedelta : Convert argument to timedelta.
        to_numeric : Convert argument to numeric type.
        convert_dtypes : Convert argument to best possible dtype.

        Examples
        --------
        >>> df = pd.DataFrame({"A": ["a", 1, 2, 3]})
        >>> df = df.iloc[1:]
        >>> df
           A
        1  1
        2  2
        3  3

        >>> df.dtypes
        A    object
        dtype: object

        >>> df.infer_objects().dtypes
        A    int64
        dtype: object
        

80. info
Print a concise summary of a DataFrame.

This method prints information about a DataFrame including
the index dtype and columns, non-null values and memory usage.

Parameters
----------
verbose : bool, optional
    Whether to print the full summary. By default, the setting in
    ``pandas.options.display.max_info_columns`` is followed.
buf : writable buffer, defaults to sys.stdout
    Where to send the output. By default, the output is printed to
    sys.stdout. Pass a writable buffer if you need to further process
    the output.    max_cols : int, optional
    When to switch from the verbose to the truncated output. If the
    DataFrame has more than `max_cols` columns, the truncated output
    is used. By default, the setting in
    ``pandas.options.display.max_info_columns`` is used.
memory_usage : bool, str, optional
    Specifies whether total memory usage of the DataFrame
    elements (including the index) should be displayed. By default,
    this follows the ``pandas.options.display.memory_usage`` setting.

    True always show memory usage. False never shows memory usage.
    A value of 'deep' is equivalent to "True with deep introspection".
    Memory usage is shown in human-readable units (base-2
    representation). Without deep introspection a memory estimation is
    made based in column dtype and number of rows assuming values
    consume the same memory amount for corresponding dtypes. With deep
    memory introspection, a real memory usage calculation is performed
    at the cost of computational resources. See the
    :ref:`Frequently Asked Questions <df-memory-usage>` for more
    details.
show_counts : bool, optional
    Whether to show the non-null counts. By default, this is shown
    only if the DataFrame is smaller than
    ``pandas.options.display.max_info_rows`` and
    ``pandas.options.display.max_info_columns``. A value of True always
    shows the counts, and False never shows the counts.
null_counts : bool, optional
    .. deprecated:: 1.2.0
        Use show_counts instead.

Returns
-------
None
    This method prints a summary of a DataFrame and returns None.

See Also
--------
DataFrame.describe: Generate descriptive statistics of DataFrame
    columns.
DataFrame.memory_usage: Memory usage of DataFrame columns.

Examples
--------
>>> int_values = [1, 2, 3, 4, 5]
>>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
>>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
>>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
...                   "float_col": float_values})
>>> df
    int_col text_col  float_col
0        1    alpha       0.00
1        2     beta       0.25
2        3    gamma       0.50
3        4    delta       0.75
4        5  epsilon       1.00

Prints information of all columns:

>>> df.info(verbose=True)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
 #   Column     Non-Null Count  Dtype
---  ------     --------------  -----
 0   int_col    5 non-null      int64
 1   text_col   5 non-null      object
 2   float_col  5 non-null      float64
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes

Prints a summary of columns count and its dtypes but not per column
information:

>>> df.info(verbose=False)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Columns: 3 entries, int_col to float_col
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes

Pipe output of DataFrame.info to buffer instead of sys.stdout, get
buffer content and writes to a text file:

>>> import io
>>> buffer = io.StringIO()
>>> df.info(buf=buffer)
>>> s = buffer.getvalue()
>>> with open("df_info.txt", "w",
...           encoding="utf-8") as f:  # doctest: +SKIP
...     f.write(s)
260

The `memory_usage` parameter allows deep introspection mode, specially
useful for big DataFrames and fine-tune memory optimization:

>>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
>>> df = pd.DataFrame({
...     'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
...     'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
...     'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
... })
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
 #   Column    Non-Null Count    Dtype
---  ------    --------------    -----
 0   column_1  1000000 non-null  object
 1   column_2  1000000 non-null  object
 2   column_3  1000000 non-null  object
dtypes: object(3)
memory usage: 22.9+ MB

>>> df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 3 columns):
 #   Column    Non-Null Count    Dtype
---  ------    --------------    -----
 0   column_1  1000000 non-null  object
 1   column_2  1000000 non-null  object
 2   column_3  1000000 non-null  object
dtypes: object(3)
memory usage: 165.9 MB


81. insert
        Insert column into DataFrame at specified location.

        Raises a ValueError if `column` is already contained in the DataFrame,
        unless `allow_duplicates` is set to True.

        Parameters
        ----------
        loc : int
            Insertion index. Must verify 0 <= loc <= len(columns).
        column : str, number, or hashable object
            Label of the inserted column.
        value : Scalar, Series, or array-like
        allow_duplicates : bool, optional, default lib.no_default

        See Also
        --------
        Index.insert : Insert new item by index.

        Examples
        --------
        >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
        >>> df
           col1  col2
        0     1     3
        1     2     4
        >>> df.insert(1, "newcol", [99, 99])
        >>> df
           col1  newcol  col2
        0     1      99     3
        1     2      99     4
        >>> df.insert(0, "col1", [100, 100], allow_duplicates=True)
        >>> df
           col1  col1  newcol  col2
        0   100     1      99     3
        1   100     2      99     4

        Notice that pandas uses index alignment in case of `value` from type `Series`:

        >>> df.insert(0, "col0", pd.Series([5, 6], index=[1, 2]))
        >>> df
           col0  col1  col1  newcol  col2
        0   NaN   100     1      99     3
        1   5.0   100     2      99     4
        

82. interpolate
None

83. isetitem
        Set the given value in the column with position 'loc'.

        This is a positional analogue to __setitem__.

        Parameters
        ----------
        loc : int or sequence of ints
        value : scalar or arraylike

        Notes
        -----
        Unlike `frame.iloc[:, i] = value`, `frame.isetitem(loc, value)` will
        _never_ try to set the values in place, but will always insert a new
        array.

        In cases where `frame.columns` is unique, this is equivalent to
        `frame[frame.columns[i]] = value`.
        

84. isin
        Whether each element in the DataFrame is contained in values.

        Parameters
        ----------
        values : iterable, Series, DataFrame or dict
            The result will only be true at a location if all the
            labels match. If `values` is a Series, that's the index. If
            `values` is a dict, the keys must be the column names,
            which must match. If `values` is a DataFrame,
            then both the index and column labels must match.

        Returns
        -------
        DataFrame
            DataFrame of booleans showing whether each element in the DataFrame
            is contained in values.

        See Also
        --------
        DataFrame.eq: Equality test for DataFrame.
        Series.isin: Equivalent method on Series.
        Series.str.contains: Test if pattern or regex is contained within a
            string of a Series or Index.

        Examples
        --------
        >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]},
        ...                   index=['falcon', 'dog'])
        >>> df
                num_legs  num_wings
        falcon         2          2
        dog            4          0

        When ``values`` is a list check whether every value in the DataFrame
        is present in the list (which animals have 0 or 2 legs or wings)

        >>> df.isin([0, 2])
                num_legs  num_wings
        falcon      True       True
        dog        False       True

        To check if ``values`` is *not* in the DataFrame, use the ``~`` operator:

        >>> ~df.isin([0, 2])
                num_legs  num_wings
        falcon     False      False
        dog         True      False

        When ``values`` is a dict, we can pass values to check for each
        column separately:

        >>> df.isin({'num_wings': [0, 3]})
                num_legs  num_wings
        falcon     False      False
        dog        False       True

        When ``values`` is a Series or DataFrame the index and column must
        match. Note that 'falcon' does not match based on the number of legs
        in other.

        >>> other = pd.DataFrame({'num_legs': [8, 3], 'num_wings': [0, 2]},
        ...                      index=['spider', 'falcon'])
        >>> df.isin(other)
                num_legs  num_wings
        falcon     False       True
        dog        False      False
        

85. isna
Detect missing values.

Return a boolean same-sized object indicating if the values are NA.
NA values, such as None or :attr:`numpy.NaN`, gets mapped to True
values.
Everything else gets mapped to False values. Characters such as empty
strings ``''`` or :attr:`numpy.inf` are not considered NA values
(unless you set ``pandas.options.mode.use_inf_as_na = True``).

Returns
-------
DataFrame
    Mask of bool values for each element in DataFrame that
    indicates whether an element is an NA value.

See Also
--------
DataFrame.isnull : Alias of isna.
DataFrame.notna : Boolean inverse of isna.
DataFrame.dropna : Omit axes labels with missing values.
isna : Top-level isna.

Examples
--------
Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
...                    born=[pd.NaT, pd.Timestamp('1939-05-27'),
...                          pd.Timestamp('1940-04-25')],
...                    name=['Alfred', 'Batman', ''],
...                    toy=[None, 'Batmobile', 'Joker']))
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker

>>> df.isna()
     age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64

>>> ser.isna()
0    False
1    False
2     True
dtype: bool


86. isnull
DataFrame.isnull is an alias for DataFrame.isna.

Detect missing values.

Return a boolean same-sized object indicating if the values are NA.
NA values, such as None or :attr:`numpy.NaN`, gets mapped to True
values.
Everything else gets mapped to False values. Characters such as empty
strings ``''`` or :attr:`numpy.inf` are not considered NA values
(unless you set ``pandas.options.mode.use_inf_as_na = True``).

Returns
-------
DataFrame
    Mask of bool values for each element in DataFrame that
    indicates whether an element is an NA value.

See Also
--------
DataFrame.isnull : Alias of isna.
DataFrame.notna : Boolean inverse of isna.
DataFrame.dropna : Omit axes labels with missing values.
isna : Top-level isna.

Examples
--------
Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
...                    born=[pd.NaT, pd.Timestamp('1939-05-27'),
...                          pd.Timestamp('1940-04-25')],
...                    name=['Alfred', 'Batman', ''],
...                    toy=[None, 'Batmobile', 'Joker']))
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker

>>> df.isna()
     age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64

>>> ser.isna()
0    False
1    False
2     True
dtype: bool


87. items
Iterate over (column name, Series) pairs.

Iterates over the DataFrame columns, returning a tuple with
the column name and the content as a Series.

Yields
------
label : object
    The column names for the DataFrame being iterated over.
content : Series
    The column entries belonging to each label, as a Series.

See Also
--------
DataFrame.iterrows : Iterate over DataFrame rows as
    (index, Series) pairs.
DataFrame.itertuples : Iterate over DataFrame rows as namedtuples
    of the values.

Examples
--------
>>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'],
...                   'population': [1864, 22000, 80000]},
...                   index=['panda', 'polar', 'koala'])
>>> df
        species   population
panda   bear      1864
polar   bear      22000
koala   marsupial 80000
>>> for label, content in df.items():
...     print(f'label: {label}')
...     print(f'content: {content}', sep='\n')
...
label: species
content:
panda         bear
polar         bear
koala    marsupial
Name: species, dtype: object
label: population
content:
panda     1864
polar    22000
koala    80000
Name: population, dtype: int64


88. iteritems
Iterate over (column name, Series) pairs.

.. deprecated:: 1.5.0
    iteritems is deprecated and will be removed in a future version.
    Use .items instead.

Iterates over the DataFrame columns, returning a tuple with
the column name and the content as a Series.

Yields
------
label : object
    The column names for the DataFrame being iterated over.
content : Series
    The column entries belonging to each label, as a Series.

See Also
--------
DataFrame.iter : Recommended alternative.
DataFrame.iterrows : Iterate over DataFrame rows as
    (index, Series) pairs.
DataFrame.itertuples : Iterate over DataFrame rows as namedtuples
    of the values.


89. iterrows
        Iterate over DataFrame rows as (index, Series) pairs.

        Yields
        ------
        index : label or tuple of label
            The index of the row. A tuple for a `MultiIndex`.
        data : Series
            The data of the row as a Series.

        See Also
        --------
        DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values.
        DataFrame.items : Iterate over (column name, Series) pairs.

        Notes
        -----
        1. Because ``iterrows`` returns a Series for each row,
           it does **not** preserve dtypes across the rows (dtypes are
           preserved across columns for DataFrames). For example,

           >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
           >>> row = next(df.iterrows())[1]
           >>> row
           int      1.0
           float    1.5
           Name: 0, dtype: float64
           >>> print(row['int'].dtype)
           float64
           >>> print(df['int'].dtype)
           int64

           To preserve dtypes while iterating over the rows, it is better
           to use :meth:`itertuples` which returns namedtuples of the values
           and which is generally faster than ``iterrows``.

        2. You should **never modify** something you are iterating over.
           This is not guaranteed to work in all cases. Depending on the
           data types, the iterator returns a copy and not a view, and writing
           to it will have no effect.
        

90. itertuples
        Iterate over DataFrame rows as namedtuples.

        Parameters
        ----------
        index : bool, default True
            If True, return the index as the first element of the tuple.
        name : str or None, default "Pandas"
            The name of the returned namedtuples or None to return regular
            tuples.

        Returns
        -------
        iterator
            An object to iterate over namedtuples for each row in the
            DataFrame with the first field possibly being the index and
            following fields being the column values.

        See Also
        --------
        DataFrame.iterrows : Iterate over DataFrame rows as (index, Series)
            pairs.
        DataFrame.items : Iterate over (column name, Series) pairs.

        Notes
        -----
        The column names will be renamed to positional names if they are
        invalid Python identifiers, repeated, or start with an underscore.

        Examples
        --------
        >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]},
        ...                   index=['dog', 'hawk'])
        >>> df
              num_legs  num_wings
        dog          4          0
        hawk         2          2
        >>> for row in df.itertuples():
        ...     print(row)
        ...
        Pandas(Index='dog', num_legs=4, num_wings=0)
        Pandas(Index='hawk', num_legs=2, num_wings=2)

        By setting the `index` parameter to False we can remove the index
        as the first element of the tuple:

        >>> for row in df.itertuples(index=False):
        ...     print(row)
        ...
        Pandas(num_legs=4, num_wings=0)
        Pandas(num_legs=2, num_wings=2)

        With the `name` parameter set we set a custom name for the yielded
        namedtuples:

        >>> for row in df.itertuples(name='Animal'):
        ...     print(row)
        ...
        Animal(Index='dog', num_legs=4, num_wings=0)
        Animal(Index='hawk', num_legs=2, num_wings=2)
        

91. join
        Join columns of another DataFrame.

        Join columns with `other` DataFrame either on index or on a key
        column. Efficiently join multiple DataFrame objects by index at once by
        passing a list.

        Parameters
        ----------
        other : DataFrame, Series, or a list containing any combination of them
            Index should be similar to one of the columns in this one. If a
            Series is passed, its name attribute must be set, and that will be
            used as the column name in the resulting joined DataFrame.
        on : str, list of str, or array-like, optional
            Column or index level name(s) in the caller to join on the index
            in `other`, otherwise joins index-on-index. If multiple
            values given, the `other` DataFrame must have a MultiIndex. Can
            pass an array as the join key if it is not already contained in
            the calling DataFrame. Like an Excel VLOOKUP operation.
        how : {'left', 'right', 'outer', 'inner'}, default 'left'
            How to handle the operation of the two objects.

            * left: use calling frame's index (or column if on is specified)
            * right: use `other`'s index.
            * outer: form union of calling frame's index (or column if on is
              specified) with `other`'s index, and sort it.
              lexicographically.
            * inner: form intersection of calling frame's index (or column if
              on is specified) with `other`'s index, preserving the order
              of the calling's one.
            * cross: creates the cartesian product from both frames, preserves the order
              of the left keys.

              .. versionadded:: 1.2.0

        lsuffix : str, default ''
            Suffix to use from left frame's overlapping columns.
        rsuffix : str, default ''
            Suffix to use from right frame's overlapping columns.
        sort : bool, default False
            Order result DataFrame lexicographically by the join key. If False,
            the order of the join key depends on the join type (how keyword).
        validate : str, optional
            If specified, checks if join is of specified type.
            * "one_to_one" or "1:1": check if join keys are unique in both left
            and right datasets.
            * "one_to_many" or "1:m": check if join keys are unique in left dataset.
            * "many_to_one" or "m:1": check if join keys are unique in right dataset.
            * "many_to_many" or "m:m": allowed, but does not result in checks.
            .. versionadded:: 1.5.0

        Returns
        -------
        DataFrame
            A dataframe containing columns from both the caller and `other`.

        See Also
        --------
        DataFrame.merge : For column(s)-on-column(s) operations.

        Notes
        -----
        Parameters `on`, `lsuffix`, and `rsuffix` are not supported when
        passing a list of `DataFrame` objects.

        Support for specifying index levels as the `on` parameter was added
        in version 0.23.0.

        Examples
        --------
        >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
        ...                    'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})

        >>> df
          key   A
        0  K0  A0
        1  K1  A1
        2  K2  A2
        3  K3  A3
        4  K4  A4
        5  K5  A5

        >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
        ...                       'B': ['B0', 'B1', 'B2']})

        >>> other
          key   B
        0  K0  B0
        1  K1  B1
        2  K2  B2

        Join DataFrames using their indexes.

        >>> df.join(other, lsuffix='_caller', rsuffix='_other')
          key_caller   A key_other    B
        0         K0  A0        K0   B0
        1         K1  A1        K1   B1
        2         K2  A2        K2   B2
        3         K3  A3       NaN  NaN
        4         K4  A4       NaN  NaN
        5         K5  A5       NaN  NaN

        If we want to join using the key columns, we need to set key to be
        the index in both `df` and `other`. The joined DataFrame will have
        key as its index.

        >>> df.set_index('key').join(other.set_index('key'))
              A    B
        key
        K0   A0   B0
        K1   A1   B1
        K2   A2   B2
        K3   A3  NaN
        K4   A4  NaN
        K5   A5  NaN

        Another option to join using the key columns is to use the `on`
        parameter. DataFrame.join always uses `other`'s index but we can use
        any column in `df`. This method preserves the original DataFrame's
        index in the result.

        >>> df.join(other.set_index('key'), on='key')
          key   A    B
        0  K0  A0   B0
        1  K1  A1   B1
        2  K2  A2   B2
        3  K3  A3  NaN
        4  K4  A4  NaN
        5  K5  A5  NaN

        Using non-unique key values shows how they are matched.

        >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K1', 'K3', 'K0', 'K1'],
        ...                    'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})

        >>> df
          key   A
        0  K0  A0
        1  K1  A1
        2  K1  A2
        3  K3  A3
        4  K0  A4
        5  K1  A5

        >>> df.join(other.set_index('key'), on='key', validate='m:1')
          key   A    B
        0  K0  A0   B0
        1  K1  A1   B1
        2  K1  A2   B1
        3  K3  A3  NaN
        4  K0  A4   B0
        5  K1  A5   B1
        

92. keys
        Get the 'info axis' (see Indexing for more).

        This is index for Series, columns for DataFrame.

        Returns
        -------
        Index
            Info axis.
        

93. kurt
Return unbiased kurtosis over requested axis.

Kurtosis obtained using Fisher's definition of
kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)


94. kurtosis
Return unbiased kurtosis over requested axis.

Kurtosis obtained using Fisher's definition of
kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)


95. last
        Select final periods of time series data based on a date offset.

        For a DataFrame with a sorted DatetimeIndex, this function
        selects the last few rows based on a date offset.

        Parameters
        ----------
        offset : str, DateOffset, dateutil.relativedelta
            The offset length of the data that will be selected. For instance,
            '3D' will display all the rows having their index within the last 3 days.

        Returns
        -------
        Series or DataFrame
            A subset of the caller.

        Raises
        ------
        TypeError
            If the index is not  a :class:`DatetimeIndex`

        See Also
        --------
        first : Select initial periods of time series based on a date offset.
        at_time : Select values at a particular time of the day.
        between_time : Select values between particular times of the day.

        Examples
        --------
        >>> i = pd.date_range('2018-04-09', periods=4, freq='2D')
        >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i)
        >>> ts
                    A
        2018-04-09  1
        2018-04-11  2
        2018-04-13  3
        2018-04-15  4

        Get the rows for the last 3 days:

        >>> ts.last('3D')
                    A
        2018-04-13  3
        2018-04-15  4

        Notice the data for 3 last calendar days were returned, not the last
        3 observed days in the dataset, and therefore data for 2018-04-11 was
        not returned.
        

96. last_valid_index
Return index for last non-NA value or None, if no non-NA value is found.

Returns
-------
scalar : type of index

Notes
-----
If all elements are non-NA/null, returns None.
Also returns None for empty Series/DataFrame.


97. le
Get Less than or equal to of dataframe and other, element-wise (binary operator `le`).

Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.

Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.

Parameters
----------
other : scalar, sequence, Series, or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
    Whether to compare by the index (0 or 'index') or columns
    (1 or 'columns').
level : int or label
    Broadcast across a level, matching Index values on the passed
    MultiIndex level.

Returns
-------
DataFrame of bool
    Result of the comparison.

See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
    or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
    inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
    or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
    inequality elementwise.

Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).

Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False

>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150

>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225

>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False


98. loc
Access a group of rows and columns by label(s) or a boolean array.

``.loc[]`` is primarily label based, but may also be used with a
boolean array.

Allowed inputs are:

- A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is
  interpreted as a *label* of the index, and **never** as an
  integer position along the index).
- A list or array of labels, e.g. ``['a', 'b', 'c']``.
- A slice object with labels, e.g. ``'a':'f'``.

  .. warning:: Note that contrary to usual python slices, **both** the
      start and the stop are included

- A boolean array of the same length as the axis being sliced,
  e.g. ``[True, False, True]``.
- An alignable boolean Series. The index of the key will be aligned before
  masking.
- An alignable Index. The Index of the returned selection will be the input.
- A ``callable`` function with one argument (the calling Series or
  DataFrame) and that returns valid output for indexing (one of the above)

See more at :ref:`Selection by Label <indexing.label>`.

Raises
------
KeyError
    If any items are not found.
IndexingError
    If an indexed key is passed and its index is unalignable to the frame index.

See Also
--------
DataFrame.at : Access a single value for a row/column label pair.
DataFrame.iloc : Access group of rows and columns by integer position(s).
DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the
    Series/DataFrame.
Series.loc : Access group of values using labels.

Examples
--------
**Getting values**

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...      index=['cobra', 'viper', 'sidewinder'],
...      columns=['max_speed', 'shield'])
>>> df
            max_speed  shield
cobra               1       2
viper               4       5
sidewinder          7       8

Single label. Note this returns the row as a Series.

>>> df.loc['viper']
max_speed    4
shield       5
Name: viper, dtype: int64

List of labels. Note using ``[[]]`` returns a DataFrame.

>>> df.loc[['viper', 'sidewinder']]
            max_speed  shield
viper               4       5
sidewinder          7       8

Single label for row and column

>>> df.loc['cobra', 'shield']
2

Slice with labels for row and single label for column. As mentioned
above, note that both the start and stop of the slice are included.

>>> df.loc['cobra':'viper', 'max_speed']
cobra    1
viper    4
Name: max_speed, dtype: int64

Boolean list with the same length as the row axis

>>> df.loc[[False, False, True]]
            max_speed  shield
sidewinder          7       8

Alignable boolean Series:

>>> df.loc[pd.Series([False, True, False],
...        index=['viper', 'sidewinder', 'cobra'])]
            max_speed  shield
sidewinder          7       8

Index (same behavior as ``df.reindex``)

>>> df.loc[pd.Index(["cobra", "viper"], name="foo")]
       max_speed  shield
foo
cobra          1       2
viper          4       5

Conditional that returns a boolean Series

>>> df.loc[df['shield'] > 6]
            max_speed  shield
sidewinder          7       8

Conditional that returns a boolean Series with column labels specified

>>> df.loc[df['shield'] > 6, ['max_speed']]
            max_speed
sidewinder          7

Callable that returns a boolean Series

>>> df.loc[lambda df: df['shield'] == 8]
            max_speed  shield
sidewinder          7       8

**Setting values**

Set value for all items matching the list of labels

>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50
>>> df
            max_speed  shield
cobra               1       2
viper               4      50
sidewinder          7      50

Set value for an entire row

>>> df.loc['cobra'] = 10
>>> df
            max_speed  shield
cobra              10      10
viper               4      50
sidewinder          7      50

Set value for an entire column

>>> df.loc[:, 'max_speed'] = 30
>>> df
            max_speed  shield
cobra              30      10
viper              30      50
sidewinder         30      50

Set value for rows matching callable condition

>>> df.loc[df['shield'] > 35] = 0
>>> df
            max_speed  shield
cobra              30      10
viper               0       0
sidewinder          0       0

**Getting values on a DataFrame with an index that has integer labels**

Another example using integers for the index

>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...      index=[7, 8, 9], columns=['max_speed', 'shield'])
>>> df
   max_speed  shield
7          1       2
8          4       5
9          7       8

Slice with integer labels for rows. As mentioned above, note that both
the start and stop of the slice are included.

>>> df.loc[7:9]
   max_speed  shield
7          1       2
8          4       5
9          7       8

**Getting values with a MultiIndex**

A number of examples using a DataFrame with a MultiIndex

>>> tuples = [
...    ('cobra', 'mark i'), ('cobra', 'mark ii'),
...    ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
...    ('viper', 'mark ii'), ('viper', 'mark iii')
... ]
>>> index = pd.MultiIndex.from_tuples(tuples)
>>> values = [[12, 2], [0, 4], [10, 20],
...         [1, 4], [7, 1], [16, 36]]
>>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)
>>> df
                     max_speed  shield
cobra      mark i           12       2
           mark ii           0       4
sidewinder mark i           10      20
           mark ii           1       4
viper      mark ii           7       1
           mark iii         16      36

Single label. Note this returns a DataFrame with a single index.

>>> df.loc['cobra']
         max_speed  shield
mark i          12       2
mark ii          0       4

Single index tuple. Note this returns a Series.

>>> df.loc[('cobra', 'mark ii')]
max_speed    0
shield       4
Name: (cobra, mark ii), dtype: int64

Single label for row and column. Similar to passing in a tuple, this
returns a Series.

>>> df.loc['cobra', 'mark i']
max_speed    12
shield        2
Name: (cobra, mark i), dtype: int64

Single tuple. Note using ``[[]]`` returns a DataFrame.

>>> df.loc[[('cobra', 'mark ii')]]
               max_speed  shield
cobra mark ii          0       4

Single tuple for the index with a single label for the column

>>> df.loc[('cobra', 'mark i'), 'shield']
2

Slice from index tuple to single label

>>> df.loc[('cobra', 'mark i'):'viper']
                     max_speed  shield
cobra      mark i           12       2
           mark ii           0       4
sidewinder mark i           10      20
           mark ii           1       4
viper      mark ii           7       1
           mark iii         16      36

Slice from index tuple to index tuple

>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')]
                    max_speed  shield
cobra      mark i          12       2
           mark ii          0       4
sidewinder mark i          10      20
           mark ii          1       4
viper      mark ii          7       1

Please see the :ref:`user guide<advanced.advanced_hierarchical>`
for more details and explanations of advanced indexing.


99. lookup
        Label-based "fancy indexing" function for DataFrame.

        .. deprecated:: 1.2.0
            DataFrame.lookup is deprecated,
            use pandas.factorize and NumPy indexing instead.
            For further details see
            :ref:`Looking up values by index/column labels <indexing.lookup>`.

        Given equal-length arrays of row and column labels, return an
        array of the values corresponding to each (row, col) pair.

        Parameters
        ----------
        row_labels : sequence
            The row labels to use for lookup.
        col_labels : sequence
            The column labels to use for lookup.

        Returns
        -------
        numpy.ndarray
            The found values.
        

100. lt
Get Less than of dataframe and other, element-wise (binary operator `lt`).

Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.

Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.

Parameters
----------
other : scalar, sequence, Series, or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
    Whether to compare by the index (0 or 'index') or columns
    (1 or 'columns').
level : int or label
    Broadcast across a level, matching Index values on the passed
    MultiIndex level.

Returns
-------
DataFrame of bool
    Result of the comparison.

See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
    or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
    inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
    or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
    inequality elementwise.

Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).

Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False

>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150

>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225

>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False


101. mad
        Return the mean absolute deviation of the values over the requested axis.

        .. deprecated:: 1.5.0
            mad is deprecated.

        Parameters
        ----------
        axis : {index (0), columns (1)}
            Axis for the function to be applied on.
            For `Series` this parameter is unused and defaults to 0.
        skipna : bool, default True
            Exclude NA/null values when computing the result.
        level : int or level name, default None
            If the axis is a MultiIndex (hierarchical), count along a
            particular level, collapsing into a Series.

        Returns
        -------
        Series or DataFrame (if level specified)                
        

102. mask
None

103. max
Return the maximum of the values over the requested axis.

If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)

See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.

Examples
--------
>>> idx = pd.MultiIndex.from_arrays([
...     ['warm', 'warm', 'cold', 'cold'],
...     ['dog', 'falcon', 'fish', 'spider']],
...     names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded  animal
warm     dog       4
         falcon    2
cold     fish      0
         spider    8
Name: legs, dtype: int64

>>> s.max()
8


104. mean
Return the mean of the values over the requested axis.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)


105. median
Return the median of the values over the requested axis.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)


106. melt
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

This function is useful to massage a DataFrame into a format where one
or more columns are identifier variables (`id_vars`), while all other
columns, considered measured variables (`value_vars`), are "unpivoted" to
the row axis, leaving just two non-identifier columns, 'variable' and
'value'.

Parameters
----------
id_vars : tuple, list, or ndarray, optional
    Column(s) to use as identifier variables.
value_vars : tuple, list, or ndarray, optional
    Column(s) to unpivot. If not specified, uses all columns that
    are not set as `id_vars`.
var_name : scalar
    Name to use for the 'variable' column. If None it uses
    ``frame.columns.name`` or 'variable'.
value_name : scalar, default 'value'
    Name to use for the 'value' column.
col_level : int or str, optional
    If columns are a MultiIndex then use this level to melt.
ignore_index : bool, default True
    If True, original index is ignored. If False, the original index is retained.
    Index labels will be repeated as necessary.

    .. versionadded:: 1.1.0

Returns
-------
DataFrame
    Unpivoted DataFrame.

See Also
--------
melt : Identical method.
pivot_table : Create a spreadsheet-style pivot table as a DataFrame.
DataFrame.pivot : Return reshaped DataFrame organized
    by given index / column values.
DataFrame.explode : Explode a DataFrame from list-like
        columns to long format.

Notes
-----
Reference :ref:`the user guide <reshaping.melt>` for more examples.

Examples
--------
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
...                    'B': {0: 1, 1: 3, 2: 5},
...                    'C': {0: 2, 1: 4, 2: 6}})
>>> df
   A  B  C
0  a  1  2
1  b  3  4
2  c  5  6

>>> df.melt(id_vars=['A'], value_vars=['B'])
   A variable  value
0  a        B      1
1  b        B      3
2  c        B      5

>>> df.melt(id_vars=['A'], value_vars=['B', 'C'])
   A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
3  a        C      2
4  b        C      4
5  c        C      6

The names of 'variable' and 'value' columns can be customized:

>>> df.melt(id_vars=['A'], value_vars=['B'],
...         var_name='myVarname', value_name='myValname')
   A myVarname  myValname
0  a         B          1
1  b         B          3
2  c         B          5

Original index values can be kept around:

>>> df.melt(id_vars=['A'], value_vars=['B', 'C'], ignore_index=False)
   A variable  value
0  a        B      1
1  b        B      3
2  c        B      5
0  a        C      2
1  b        C      4
2  c        C      6

If you have multi-index columns:

>>> df.columns = [list('ABC'), list('DEF')]
>>> df
   A  B  C
   D  E  F
0  a  1  2
1  b  3  4
2  c  5  6

>>> df.melt(col_level=0, id_vars=['A'], value_vars=['B'])
   A variable  value
0  a        B      1
1  b        B      3
2  c        B      5

>>> df.melt(id_vars=[('A', 'D')], value_vars=[('B', 'E')])
  (A, D) variable_0 variable_1  value
0      a          B          E      1
1      b          B          E      3
2      c          B          E      5


107. memory_usage
        Return the memory usage of each column in bytes.

        The memory usage can optionally include the contribution of
        the index and elements of `object` dtype.

        This value is displayed in `DataFrame.info` by default. This can be
        suppressed by setting ``pandas.options.display.memory_usage`` to False.

        Parameters
        ----------
        index : bool, default True
            Specifies whether to include the memory usage of the DataFrame's
            index in returned Series. If ``index=True``, the memory usage of
            the index is the first item in the output.
        deep : bool, default False
            If True, introspect the data deeply by interrogating
            `object` dtypes for system-level memory consumption, and include
            it in the returned values.

        Returns
        -------
        Series
            A Series whose index is the original column names and whose values
            is the memory usage of each column in bytes.

        See Also
        --------
        numpy.ndarray.nbytes : Total bytes consumed by the elements of an
            ndarray.
        Series.memory_usage : Bytes consumed by a Series.
        Categorical : Memory-efficient array for string values with
            many repeated values.
        DataFrame.info : Concise summary of a DataFrame.

        Notes
        -----
        See the :ref:`Frequently Asked Questions <df-memory-usage>` for more
        details.

        Examples
        --------
        >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']
        >>> data = dict([(t, np.ones(shape=5000, dtype=int).astype(t))
        ...              for t in dtypes])
        >>> df = pd.DataFrame(data)
        >>> df.head()
           int64  float64            complex128  object  bool
        0      1      1.0              1.0+0.0j       1  True
        1      1      1.0              1.0+0.0j       1  True
        2      1      1.0              1.0+0.0j       1  True
        3      1      1.0              1.0+0.0j       1  True
        4      1      1.0              1.0+0.0j       1  True

        >>> df.memory_usage()
        Index           128
        int64         40000
        float64       40000
        complex128    80000
        object        40000
        bool           5000
        dtype: int64

        >>> df.memory_usage(index=False)
        int64         40000
        float64       40000
        complex128    80000
        object        40000
        bool           5000
        dtype: int64

        The memory footprint of `object` dtype columns is ignored by default:

        >>> df.memory_usage(deep=True)
        Index            128
        int64          40000
        float64        40000
        complex128     80000
        object        180000
        bool            5000
        dtype: int64

        Use a Categorical for efficient storage of an object-dtype column with
        many repeated values.

        >>> df['object'].astype('category').memory_usage(deep=True)
        5244
        

108. merge
Merge DataFrame or named Series objects with a database-style join.

A named Series object is treated as a DataFrame with a single named column.

The join is done on columns or indexes. If joining columns on
columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes
on indexes or indexes on a column or columns, the index will be passed on.
When performing a cross merge, no column specifications to merge on are
allowed.

.. warning::

    If both key columns contain rows where the key is a null value, those
    rows will be matched against each other. This is different from usual SQL
    join behaviour and can lead to unexpected results.

Parameters
----------
right : DataFrame or named Series
    Object to merge with.
how : {'left', 'right', 'outer', 'inner', 'cross'}, default 'inner'
    Type of merge to be performed.

    * left: use only keys from left frame, similar to a SQL left outer join;
      preserve key order.
    * right: use only keys from right frame, similar to a SQL right outer join;
      preserve key order.
    * outer: use union of keys from both frames, similar to a SQL full outer
      join; sort keys lexicographically.
    * inner: use intersection of keys from both frames, similar to a SQL inner
      join; preserve the order of the left keys.
    * cross: creates the cartesian product from both frames, preserves the order
      of the left keys.

      .. versionadded:: 1.2.0

on : label or list
    Column or index level names to join on. These must be found in both
    DataFrames. If `on` is None and not merging on indexes then this defaults
    to the intersection of the columns in both DataFrames.
left_on : label or list, or array-like
    Column or index level names to join on in the left DataFrame. Can also
    be an array or list of arrays of the length of the left DataFrame.
    These arrays are treated as if they are columns.
right_on : label or list, or array-like
    Column or index level names to join on in the right DataFrame. Can also
    be an array or list of arrays of the length of the right DataFrame.
    These arrays are treated as if they are columns.
left_index : bool, default False
    Use the index from the left DataFrame as the join key(s). If it is a
    MultiIndex, the number of keys in the other DataFrame (either the index
    or a number of columns) must match the number of levels.
right_index : bool, default False
    Use the index from the right DataFrame as the join key. Same caveats as
    left_index.
sort : bool, default False
    Sort the join keys lexicographically in the result DataFrame. If False,
    the order of the join keys depends on the join type (how keyword).
suffixes : list-like, default is ("_x", "_y")
    A length-2 sequence where each element is optionally a string
    indicating the suffix to add to overlapping column names in
    `left` and `right` respectively. Pass a value of `None` instead
    of a string to indicate that the column name from `left` or
    `right` should be left as-is, with no suffix. At least one of the
    values must not be None.
copy : bool, default True
    If False, avoid copy if possible.
indicator : bool or str, default False
    If True, adds a column to the output DataFrame called "_merge" with
    information on the source of each row. The column can be given a different
    name by providing a string argument. The column will have a Categorical
    type with the value of "left_only" for observations whose merge key only
    appears in the left DataFrame, "right_only" for observations
    whose merge key only appears in the right DataFrame, and "both"
    if the observation's merge key is found in both DataFrames.

validate : str, optional
    If specified, checks if merge is of specified type.

    * "one_to_one" or "1:1": check if merge keys are unique in both
      left and right datasets.
    * "one_to_many" or "1:m": check if merge keys are unique in left
      dataset.
    * "many_to_one" or "m:1": check if merge keys are unique in right
      dataset.
    * "many_to_many" or "m:m": allowed, but does not result in checks.

Returns
-------
DataFrame
    A DataFrame of the two merged objects.

See Also
--------
merge_ordered : Merge with optional filling/interpolation.
merge_asof : Merge on nearest keys.
DataFrame.join : Similar method using indices.

Notes
-----
Support for specifying index levels as the `on`, `left_on`, and
`right_on` parameters was added in version 0.23.0
Support for merging named Series objects was added in version 0.24.0

Examples
--------
>>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
...                     'value': [1, 2, 3, 5]})
>>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
...                     'value': [5, 6, 7, 8]})
>>> df1
    lkey value
0   foo      1
1   bar      2
2   baz      3
3   foo      5
>>> df2
    rkey value
0   foo      5
1   bar      6
2   baz      7
3   foo      8

Merge df1 and df2 on the lkey and rkey columns. The value columns have
the default suffixes, _x and _y, appended.

>>> df1.merge(df2, left_on='lkey', right_on='rkey')
  lkey  value_x rkey  value_y
0  foo        1  foo        5
1  foo        1  foo        8
2  foo        5  foo        5
3  foo        5  foo        8
4  bar        2  bar        6
5  baz        3  baz        7

Merge DataFrames df1 and df2 with specified left and right suffixes
appended to any overlapping columns.

>>> df1.merge(df2, left_on='lkey', right_on='rkey',
...           suffixes=('_left', '_right'))
  lkey  value_left rkey  value_right
0  foo           1  foo            5
1  foo           1  foo            8
2  foo           5  foo            5
3  foo           5  foo            8
4  bar           2  bar            6
5  baz           3  baz            7

Merge DataFrames df1 and df2, but raise an exception if the DataFrames have
any overlapping columns.

>>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False))
Traceback (most recent call last):
...
ValueError: columns overlap but no suffix specified:
    Index(['value'], dtype='object')

>>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]})
>>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]})
>>> df1
      a  b
0   foo  1
1   bar  2
>>> df2
      a  c
0   foo  3
1   baz  4

>>> df1.merge(df2, how='inner', on='a')
      a  b  c
0   foo  1  3

>>> df1.merge(df2, how='left', on='a')
      a  b  c
0   foo  1  3.0
1   bar  2  NaN

>>> df1 = pd.DataFrame({'left': ['foo', 'bar']})
>>> df2 = pd.DataFrame({'right': [7, 8]})
>>> df1
    left
0   foo
1   bar
>>> df2
    right
0   7
1   8

>>> df1.merge(df2, how='cross')
   left  right
0   foo      7
1   foo      8
2   bar      7
3   bar      8


109. min
Return the minimum of the values over the requested axis.

If you want the *index* of the minimum, use ``idxmin``. This is the equivalent of the ``numpy.ndarray`` method ``argmin``.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)

See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.

Examples
--------
>>> idx = pd.MultiIndex.from_arrays([
...     ['warm', 'warm', 'cold', 'cold'],
...     ['dog', 'falcon', 'fish', 'spider']],
...     names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded  animal
warm     dog       4
         falcon    2
cold     fish      0
         spider    8
Name: legs, dtype: int64

>>> s.min()
0


110. mod
Get Modulo of dataframe and other, element-wise (binary operator `mod`).

Equivalent to ``dataframe % other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rmod`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


111. mode
        Get the mode(s) of each element along the selected axis.

        The mode of a set of values is the value that appears most often.
        It can be multiple values.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            The axis to iterate over while searching for the mode:

            * 0 or 'index' : get mode of each column
            * 1 or 'columns' : get mode of each row.

        numeric_only : bool, default False
            If True, only apply to numeric columns.
        dropna : bool, default True
            Don't consider counts of NaN/NaT.

        Returns
        -------
        DataFrame
            The modes of each column or row.

        See Also
        --------
        Series.mode : Return the highest frequency value in a Series.
        Series.value_counts : Return the counts of values in a Series.

        Examples
        --------
        >>> df = pd.DataFrame([('bird', 2, 2),
        ...                    ('mammal', 4, np.nan),
        ...                    ('arthropod', 8, 0),
        ...                    ('bird', 2, np.nan)],
        ...                   index=('falcon', 'horse', 'spider', 'ostrich'),
        ...                   columns=('species', 'legs', 'wings'))
        >>> df
                   species  legs  wings
        falcon        bird     2    2.0
        horse       mammal     4    NaN
        spider   arthropod     8    0.0
        ostrich       bird     2    NaN

        By default, missing values are not considered, and the mode of wings
        are both 0 and 2. Because the resulting DataFrame has two rows,
        the second row of ``species`` and ``legs`` contains ``NaN``.

        >>> df.mode()
          species  legs  wings
        0    bird   2.0    0.0
        1     NaN   NaN    2.0

        Setting ``dropna=False`` ``NaN`` values are considered and they can be
        the mode (like for wings).

        >>> df.mode(dropna=False)
          species  legs  wings
        0    bird     2    NaN

        Setting ``numeric_only=True``, only the mode of numeric columns is
        computed, and columns of other types are ignored.

        >>> df.mode(numeric_only=True)
           legs  wings
        0   2.0    0.0
        1   NaN    2.0

        To compute the mode over columns and not rows, use the axis parameter:

        >>> df.mode(axis='columns', numeric_only=True)
                   0    1
        falcon   2.0  NaN
        horse    4.0  NaN
        spider   0.0  8.0
        ostrich  2.0  NaN
        

112. mul
Get Multiplication of dataframe and other, element-wise (binary operator `mul`).

Equivalent to ``dataframe * other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rmul`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


113. multiply
Get Multiplication of dataframe and other, element-wise (binary operator `mul`).

Equivalent to ``dataframe * other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rmul`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


114. ndim
int([x]) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given.  If x is a number, return x.__int__().  For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base.  The literal can be preceded by '+' or '-' and be surrounded
by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int('0b100', base=0)
4

115. ne
Get Not equal to of dataframe and other, element-wise (binary operator `ne`).

Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.

Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.

Parameters
----------
other : scalar, sequence, Series, or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
    Whether to compare by the index (0 or 'index') or columns
    (1 or 'columns').
level : int or label
    Broadcast across a level, matching Index values on the passed
    MultiIndex level.

Returns
-------
DataFrame of bool
    Result of the comparison.

See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
    or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
    inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
    or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
    inequality elementwise.

Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).

Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False

>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150

>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225

>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False


116. nlargest
        Return the first `n` rows ordered by `columns` in descending order.

        Return the first `n` rows with the largest values in `columns`, in
        descending order. The columns that are not specified are returned as
        well, but not used for ordering.

        This method is equivalent to
        ``df.sort_values(columns, ascending=False).head(n)``, but more
        performant.

        Parameters
        ----------
        n : int
            Number of rows to return.
        columns : label or list of labels
            Column label(s) to order by.
        keep : {'first', 'last', 'all'}, default 'first'
            Where there are duplicate values:

            - ``first`` : prioritize the first occurrence(s)
            - ``last`` : prioritize the last occurrence(s)
            - ``all`` : do not drop any duplicates, even it means
              selecting more than `n` items.

        Returns
        -------
        DataFrame
            The first `n` rows ordered by the given columns in descending
            order.

        See Also
        --------
        DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in
            ascending order.
        DataFrame.sort_values : Sort DataFrame by the values.
        DataFrame.head : Return the first `n` rows without re-ordering.

        Notes
        -----
        This function cannot be used with all column types. For example, when
        specifying columns with `object` or `category` dtypes, ``TypeError`` is
        raised.

        Examples
        --------
        >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
        ...                                   434000, 434000, 337000, 11300,
        ...                                   11300, 11300],
        ...                    'GDP': [1937894, 2583560 , 12011, 4520, 12128,
        ...                            17036, 182, 38, 311],
        ...                    'alpha-2': ["IT", "FR", "MT", "MV", "BN",
        ...                                "IS", "NR", "TV", "AI"]},
        ...                   index=["Italy", "France", "Malta",
        ...                          "Maldives", "Brunei", "Iceland",
        ...                          "Nauru", "Tuvalu", "Anguilla"])
        >>> df
                  population      GDP alpha-2
        Italy       59000000  1937894      IT
        France      65000000  2583560      FR
        Malta         434000    12011      MT
        Maldives      434000     4520      MV
        Brunei        434000    12128      BN
        Iceland       337000    17036      IS
        Nauru          11300      182      NR
        Tuvalu         11300       38      TV
        Anguilla       11300      311      AI

        In the following example, we will use ``nlargest`` to select the three
        rows having the largest values in column "population".

        >>> df.nlargest(3, 'population')
                population      GDP alpha-2
        France    65000000  2583560      FR
        Italy     59000000  1937894      IT
        Malta       434000    12011      MT

        When using ``keep='last'``, ties are resolved in reverse order:

        >>> df.nlargest(3, 'population', keep='last')
                population      GDP alpha-2
        France    65000000  2583560      FR
        Italy     59000000  1937894      IT
        Brunei      434000    12128      BN

        When using ``keep='all'``, all duplicate items are maintained:

        >>> df.nlargest(3, 'population', keep='all')
                  population      GDP alpha-2
        France      65000000  2583560      FR
        Italy       59000000  1937894      IT
        Malta         434000    12011      MT
        Maldives      434000     4520      MV
        Brunei        434000    12128      BN

        To order by the largest values in column "population" and then "GDP",
        we can specify multiple columns like in the next example.

        >>> df.nlargest(3, ['population', 'GDP'])
                population      GDP alpha-2
        France    65000000  2583560      FR
        Italy     59000000  1937894      IT
        Brunei      434000    12128      BN
        

117. notna
Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA.
Non-missing values get mapped to True. Characters such as empty
strings ``''`` or :attr:`numpy.inf` are not considered NA values
(unless you set ``pandas.options.mode.use_inf_as_na = True``).
NA values, such as None or :attr:`numpy.NaN`, get mapped to False
values.

Returns
-------
DataFrame
    Mask of bool values for each element in DataFrame that
    indicates whether an element is not an NA value.

See Also
--------
DataFrame.notnull : Alias of notna.
DataFrame.isna : Boolean inverse of notna.
DataFrame.dropna : Omit axes labels with missing values.
notna : Top-level notna.

Examples
--------
Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
...                    born=[pd.NaT, pd.Timestamp('1939-05-27'),
...                          pd.Timestamp('1940-04-25')],
...                    name=['Alfred', 'Batman', ''],
...                    toy=[None, 'Batmobile', 'Joker']))
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker

>>> df.notna()
     age   born  name    toy
0   True  False  True  False
1   True   True  True   True
2  False   True  True   True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64

>>> ser.notna()
0     True
1     True
2    False
dtype: bool


118. notnull
DataFrame.notnull is an alias for DataFrame.notna.

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA.
Non-missing values get mapped to True. Characters such as empty
strings ``''`` or :attr:`numpy.inf` are not considered NA values
(unless you set ``pandas.options.mode.use_inf_as_na = True``).
NA values, such as None or :attr:`numpy.NaN`, get mapped to False
values.

Returns
-------
DataFrame
    Mask of bool values for each element in DataFrame that
    indicates whether an element is not an NA value.

See Also
--------
DataFrame.notnull : Alias of notna.
DataFrame.isna : Boolean inverse of notna.
DataFrame.dropna : Omit axes labels with missing values.
notna : Top-level notna.

Examples
--------
Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
...                    born=[pd.NaT, pd.Timestamp('1939-05-27'),
...                          pd.Timestamp('1940-04-25')],
...                    name=['Alfred', 'Batman', ''],
...                    toy=[None, 'Batmobile', 'Joker']))
>>> df
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker

>>> df.notna()
     age   born  name    toy
0   True  False  True  False
1   True   True  True   True
2  False   True  True   True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])
>>> ser
0    5.0
1    6.0
2    NaN
dtype: float64

>>> ser.notna()
0     True
1     True
2    False
dtype: bool


119. nsmallest
        Return the first `n` rows ordered by `columns` in ascending order.

        Return the first `n` rows with the smallest values in `columns`, in
        ascending order. The columns that are not specified are returned as
        well, but not used for ordering.

        This method is equivalent to
        ``df.sort_values(columns, ascending=True).head(n)``, but more
        performant.

        Parameters
        ----------
        n : int
            Number of items to retrieve.
        columns : list or str
            Column name or names to order by.
        keep : {'first', 'last', 'all'}, default 'first'
            Where there are duplicate values:

            - ``first`` : take the first occurrence.
            - ``last`` : take the last occurrence.
            - ``all`` : do not drop any duplicates, even it means
              selecting more than `n` items.

        Returns
        -------
        DataFrame

        See Also
        --------
        DataFrame.nlargest : Return the first `n` rows ordered by `columns` in
            descending order.
        DataFrame.sort_values : Sort DataFrame by the values.
        DataFrame.head : Return the first `n` rows without re-ordering.

        Examples
        --------
        >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
        ...                                   434000, 434000, 337000, 337000,
        ...                                   11300, 11300],
        ...                    'GDP': [1937894, 2583560 , 12011, 4520, 12128,
        ...                            17036, 182, 38, 311],
        ...                    'alpha-2': ["IT", "FR", "MT", "MV", "BN",
        ...                                "IS", "NR", "TV", "AI"]},
        ...                   index=["Italy", "France", "Malta",
        ...                          "Maldives", "Brunei", "Iceland",
        ...                          "Nauru", "Tuvalu", "Anguilla"])
        >>> df
                  population      GDP alpha-2
        Italy       59000000  1937894      IT
        France      65000000  2583560      FR
        Malta         434000    12011      MT
        Maldives      434000     4520      MV
        Brunei        434000    12128      BN
        Iceland       337000    17036      IS
        Nauru         337000      182      NR
        Tuvalu         11300       38      TV
        Anguilla       11300      311      AI

        In the following example, we will use ``nsmallest`` to select the
        three rows having the smallest values in column "population".

        >>> df.nsmallest(3, 'population')
                  population    GDP alpha-2
        Tuvalu         11300     38      TV
        Anguilla       11300    311      AI
        Iceland       337000  17036      IS

        When using ``keep='last'``, ties are resolved in reverse order:

        >>> df.nsmallest(3, 'population', keep='last')
                  population  GDP alpha-2
        Anguilla       11300  311      AI
        Tuvalu         11300   38      TV
        Nauru         337000  182      NR

        When using ``keep='all'``, all duplicate items are maintained:

        >>> df.nsmallest(3, 'population', keep='all')
                  population    GDP alpha-2
        Tuvalu         11300     38      TV
        Anguilla       11300    311      AI
        Iceland       337000  17036      IS
        Nauru         337000    182      NR

        To order by the smallest values in column "population" and then "GDP", we can
        specify multiple columns like in the next example.

        >>> df.nsmallest(3, ['population', 'GDP'])
                  population  GDP alpha-2
        Tuvalu         11300   38      TV
        Anguilla       11300  311      AI
        Nauru         337000  182      NR
        

120. nunique
        Count number of distinct elements in specified axis.

        Return Series with number of distinct elements. Can ignore NaN
        values.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for
            column-wise.
        dropna : bool, default True
            Don't include NaN in the counts.

        Returns
        -------
        Series

        See Also
        --------
        Series.nunique: Method nunique for Series.
        DataFrame.count: Count non-NA cells for each column or row.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [4, 5, 6], 'B': [4, 1, 1]})
        >>> df.nunique()
        A    3
        B    2
        dtype: int64

        >>> df.nunique(axis=1)
        0    1
        1    2
        2    2
        dtype: int64
        

121. pad
Synonym for :meth:`DataFrame.fillna` with ``method='ffill'``.

Returns
-------
Series/DataFrame or None
    Object with missing values filled or None if ``inplace=True``.


122. pct_change
        Percentage change between the current and a prior element.

        Computes the percentage change from the immediately previous row by
        default. This is useful in comparing the percentage of change in a time
        series of elements.

        Parameters
        ----------
        periods : int, default 1
            Periods to shift for forming percent change.
        fill_method : str, default 'pad'
            How to handle NAs **before** computing percent changes.
        limit : int, default None
            The number of consecutive NAs to fill before stopping.
        freq : DateOffset, timedelta, or str, optional
            Increment to use from time series API (e.g. 'M' or BDay()).
        **kwargs
            Additional keyword arguments are passed into
            `DataFrame.shift` or `Series.shift`.

        Returns
        -------
        chg : Series or DataFrame
            The same type as the calling object.

        See Also
        --------
        Series.diff : Compute the difference of two elements in a Series.
        DataFrame.diff : Compute the difference of two elements in a DataFrame.
        Series.shift : Shift the index by some number of periods.
        DataFrame.shift : Shift the index by some number of periods.

        Examples
        --------
        **Series**

        >>> s = pd.Series([90, 91, 85])
        >>> s
        0    90
        1    91
        2    85
        dtype: int64

        >>> s.pct_change()
        0         NaN
        1    0.011111
        2   -0.065934
        dtype: float64

        >>> s.pct_change(periods=2)
        0         NaN
        1         NaN
        2   -0.055556
        dtype: float64

        See the percentage change in a Series where filling NAs with last
        valid observation forward to next valid.

        >>> s = pd.Series([90, 91, None, 85])
        >>> s
        0    90.0
        1    91.0
        2     NaN
        3    85.0
        dtype: float64

        >>> s.pct_change(fill_method='ffill')
        0         NaN
        1    0.011111
        2    0.000000
        3   -0.065934
        dtype: float64

        **DataFrame**

        Percentage change in French franc, Deutsche Mark, and Italian lira from
        1980-01-01 to 1980-03-01.

        >>> df = pd.DataFrame({
        ...     'FR': [4.0405, 4.0963, 4.3149],
        ...     'GR': [1.7246, 1.7482, 1.8519],
        ...     'IT': [804.74, 810.01, 860.13]},
        ...     index=['1980-01-01', '1980-02-01', '1980-03-01'])
        >>> df
                        FR      GR      IT
        1980-01-01  4.0405  1.7246  804.74
        1980-02-01  4.0963  1.7482  810.01
        1980-03-01  4.3149  1.8519  860.13

        >>> df.pct_change()
                          FR        GR        IT
        1980-01-01       NaN       NaN       NaN
        1980-02-01  0.013810  0.013684  0.006549
        1980-03-01  0.053365  0.059318  0.061876

        Percentage of change in GOOG and APPL stock volume. Shows computing
        the percentage change between columns.

        >>> df = pd.DataFrame({
        ...     '2016': [1769950, 30586265],
        ...     '2015': [1500923, 40912316],
        ...     '2014': [1371819, 41403351]},
        ...     index=['GOOG', 'APPL'])
        >>> df
                  2016      2015      2014
        GOOG   1769950   1500923   1371819
        APPL  30586265  40912316  41403351

        >>> df.pct_change(axis='columns', periods=-1)
                  2016      2015  2014
        GOOG  0.179241  0.094112   NaN
        APPL -0.252395 -0.011860   NaN
        

123. pipe
Apply chainable functions that expect Series or DataFrames.

Parameters
----------
func : function
    Function to apply to the Series/DataFrame.
    ``args``, and ``kwargs`` are passed into ``func``.
    Alternatively a ``(callable, data_keyword)`` tuple where
    ``data_keyword`` is a string indicating the keyword of
    ``callable`` that expects the Series/DataFrame.
args : iterable, optional
    Positional arguments passed into ``func``.
kwargs : mapping, optional
    A dictionary of keyword arguments passed into ``func``.

Returns
-------
object : the return type of ``func``.

See Also
--------
DataFrame.apply : Apply a function along input axis of DataFrame.
DataFrame.applymap : Apply a function elementwise on a whole DataFrame.
Series.map : Apply a mapping correspondence on a
    :class:`~pandas.Series`.

Notes
-----
Use ``.pipe`` when chaining together functions that expect
Series, DataFrames or GroupBy objects. Instead of writing

>>> func(g(h(df), arg1=a), arg2=b, arg3=c)  # doctest: +SKIP

You can write

>>> (df.pipe(h)
...    .pipe(g, arg1=a)
...    .pipe(func, arg2=b, arg3=c)
... )  # doctest: +SKIP

If you have a function that takes the data as (say) the second
argument, pass a tuple indicating which keyword expects the
data. For example, suppose ``f`` takes its data as ``arg2``:

>>> (df.pipe(h)
...    .pipe(g, arg1=a)
...    .pipe((func, 'arg2'), arg1=a, arg3=c)
...  )  # doctest: +SKIP


124. pivot
Return reshaped DataFrame organized by given index / column values.

Reshape data (produce a "pivot" table) based on column values. Uses
unique values from specified `index` / `columns` to form axes of the
resulting DataFrame. This function does not support data
aggregation, multiple values will result in a MultiIndex in the
columns. See the :ref:`User Guide <reshaping>` for more on reshaping.

Parameters
----------
index : str or object or a list of str, optional
    Column to use to make new frame's index. If None, uses
    existing index.

    .. versionchanged:: 1.1.0
       Also accept list of index names.

columns : str or object or a list of str
    Column to use to make new frame's columns.

    .. versionchanged:: 1.1.0
       Also accept list of columns names.

values : str, object or a list of the previous, optional
    Column(s) to use for populating new frame's values. If not
    specified, all remaining columns will be used and the result will
    have hierarchically indexed columns.

Returns
-------
DataFrame
    Returns reshaped DataFrame.

Raises
------
ValueError:
    When there are any `index`, `columns` combinations with multiple
    values. `DataFrame.pivot_table` when you need to aggregate.

See Also
--------
DataFrame.pivot_table : Generalization of pivot that can handle
    duplicate values for one index/column pair.
DataFrame.unstack : Pivot based on the index values instead of a
    column.
wide_to_long : Wide panel to long format. Less flexible but more
    user-friendly than melt.

Notes
-----
For finer-tuned control, see hierarchical indexing documentation along
with the related stack/unstack methods.

Reference :ref:`the user guide <reshaping.pivot>` for more examples.

Examples
--------
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
...                            'two'],
...                    'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
...                    'baz': [1, 2, 3, 4, 5, 6],
...                    'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
>>> df
    foo   bar  baz  zoo
0   one   A    1    x
1   one   B    2    y
2   one   C    3    z
3   two   A    4    q
4   two   B    5    w
5   two   C    6    t

>>> df.pivot(index='foo', columns='bar', values='baz')
bar  A   B   C
foo
one  1   2   3
two  4   5   6

>>> df.pivot(index='foo', columns='bar')['baz']
bar  A   B   C
foo
one  1   2   3
two  4   5   6

>>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo'])
      baz       zoo
bar   A  B  C   A  B  C
foo
one   1  2  3   x  y  z
two   4  5  6   q  w  t

You could also assign a list of column names or a list of index names.

>>> df = pd.DataFrame({
...        "lev1": [1, 1, 1, 2, 2, 2],
...        "lev2": [1, 1, 2, 1, 1, 2],
...        "lev3": [1, 2, 1, 2, 1, 2],
...        "lev4": [1, 2, 3, 4, 5, 6],
...        "values": [0, 1, 2, 3, 4, 5]})
>>> df
    lev1 lev2 lev3 lev4 values
0   1    1    1    1    0
1   1    1    2    2    1
2   1    2    1    3    2
3   2    1    2    4    3
4   2    1    1    5    4
5   2    2    2    6    5

>>> df.pivot(index="lev1", columns=["lev2", "lev3"],values="values")
lev2    1         2
lev3    1    2    1    2
lev1
1     0.0  1.0  2.0  NaN
2     4.0  3.0  NaN  5.0

>>> df.pivot(index=["lev1", "lev2"], columns=["lev3"],values="values")
      lev3    1    2
lev1  lev2
   1     1  0.0  1.0
         2  2.0  NaN
   2     1  4.0  3.0
         2  NaN  5.0

A ValueError is raised if there are any duplicates.

>>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'],
...                    "bar": ['A', 'A', 'B', 'C'],
...                    "baz": [1, 2, 3, 4]})
>>> df
   foo bar  baz
0  one   A    1
1  one   A    2
2  two   B    3
3  two   C    4

Notice that the first two rows are the same for our `index`
and `columns` arguments.

>>> df.pivot(index='foo', columns='bar', values='baz')
Traceback (most recent call last):
   ...
ValueError: Index contains duplicate entries, cannot reshape


125. pivot_table
Create a spreadsheet-style pivot table as a DataFrame.

The levels in the pivot table will be stored in MultiIndex objects
(hierarchical indexes) on the index and columns of the result DataFrame.

Parameters
----------
values : column to aggregate, optional
index : column, Grouper, array, or list of the previous
    If an array is passed, it must be the same length as the data. The
    list can contain any of the other types (except list).
    Keys to group by on the pivot table index.  If an array is passed,
    it is being used as the same manner as column values.
columns : column, Grouper, array, or list of the previous
    If an array is passed, it must be the same length as the data. The
    list can contain any of the other types (except list).
    Keys to group by on the pivot table column.  If an array is passed,
    it is being used as the same manner as column values.
aggfunc : function, list of functions, dict, default numpy.mean
    If list of functions passed, the resulting pivot table will have
    hierarchical columns whose top level are the function names
    (inferred from the function objects themselves)
    If dict is passed, the key is column to aggregate and value
    is function or list of functions.
fill_value : scalar, default None
    Value to replace missing values with (in the resulting pivot table,
    after aggregation).
margins : bool, default False
    Add all row / columns (e.g. for subtotal / grand totals).
dropna : bool, default True
    Do not include columns whose entries are all NaN. If True,
    rows with a NaN value in any column will be omitted before
    computing margins.
margins_name : str, default 'All'
    Name of the row / column that will contain the totals
    when margins is True.
observed : bool, default False
    This only applies if any of the groupers are Categoricals.
    If True: only show observed values for categorical groupers.
    If False: show all values for categorical groupers.

    .. versionchanged:: 0.25.0

sort : bool, default True
    Specifies if the result should be sorted.

    .. versionadded:: 1.3.0

Returns
-------
DataFrame
    An Excel style pivot table.

See Also
--------
DataFrame.pivot : Pivot without aggregation that can handle
    non-numeric data.
DataFrame.melt: Unpivot a DataFrame from wide to long format,
    optionally leaving identifiers set.
wide_to_long : Wide panel to long format. Less flexible but more
    user-friendly than melt.

Notes
-----
Reference :ref:`the user guide <reshaping.pivot>` for more examples.

Examples
--------
>>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
...                          "bar", "bar", "bar", "bar"],
...                    "B": ["one", "one", "one", "two", "two",
...                          "one", "one", "two", "two"],
...                    "C": ["small", "large", "large", "small",
...                          "small", "large", "small", "small",
...                          "large"],
...                    "D": [1, 2, 2, 3, 3, 4, 5, 6, 7],
...                    "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]})
>>> df
     A    B      C  D  E
0  foo  one  small  1  2
1  foo  one  large  2  4
2  foo  one  large  2  5
3  foo  two  small  3  5
4  foo  two  small  3  6
5  bar  one  large  4  6
6  bar  one  small  5  8
7  bar  two  small  6  9
8  bar  two  large  7  9

This first example aggregates values by taking the sum.

>>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
...                     columns=['C'], aggfunc=np.sum)
>>> table
C        large  small
A   B
bar one    4.0    5.0
    two    7.0    6.0
foo one    4.0    1.0
    two    NaN    6.0

We can also fill missing values using the `fill_value` parameter.

>>> table = pd.pivot_table(df, values='D', index=['A', 'B'],
...                     columns=['C'], aggfunc=np.sum, fill_value=0)
>>> table
C        large  small
A   B
bar one      4      5
    two      7      6
foo one      4      1
    two      0      6

The next example aggregates by taking the mean across multiple columns.

>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
...                     aggfunc={'D': np.mean,
...                              'E': np.mean})
>>> table
                D         E
A   C
bar large  5.500000  7.500000
    small  5.500000  8.500000
foo large  2.000000  4.500000
    small  2.333333  4.333333

We can also calculate multiple types of aggregations for any given
value column.

>>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'],
...                     aggfunc={'D': np.mean,
...                              'E': [min, max, np.mean]})
>>> table
                  D   E
               mean max      mean  min
A   C
bar large  5.500000   9  7.500000    6
    small  5.500000   9  8.500000    8
foo large  2.000000   5  4.500000    4
    small  2.333333   6  4.333333    2


126. plot
    Make plots of Series or DataFrame.

    Uses the backend specified by the
    option ``plotting.backend``. By default, matplotlib is used.

    Parameters
    ----------
    data : Series or DataFrame
        The object for which the method is called.
    x : label or position, default None
        Only used if data is a DataFrame.
    y : label, position or list of label, positions, default None
        Allows plotting of one column versus another. Only used if data is a
        DataFrame.
    kind : str
        The kind of plot to produce:

        - 'line' : line plot (default)
        - 'bar' : vertical bar plot
        - 'barh' : horizontal bar plot
        - 'hist' : histogram
        - 'box' : boxplot
        - 'kde' : Kernel Density Estimation plot
        - 'density' : same as 'kde'
        - 'area' : area plot
        - 'pie' : pie plot
        - 'scatter' : scatter plot (DataFrame only)
        - 'hexbin' : hexbin plot (DataFrame only)
    ax : matplotlib axes object, default None
        An axes of the current figure.
    subplots : bool or sequence of iterables, default False
        Whether to group columns into subplots:

        - ``False`` : No subplots will be used
        - ``True`` : Make separate subplots for each column.
        - sequence of iterables of column labels: Create a subplot for each
          group of columns. For example `[('a', 'c'), ('b', 'd')]` will
          create 2 subplots: one with columns 'a' and 'c', and one
          with columns 'b' and 'd'. Remaining columns that aren't specified
          will be plotted in additional subplots (one per column).
          .. versionadded:: 1.5.0

    sharex : bool, default True if ax is None else False
        In case ``subplots=True``, share x axis and set some x axis labels
        to invisible; defaults to True if ax is None otherwise False if
        an ax is passed in; Be aware, that passing in both an ax and
        ``sharex=True`` will alter all x axis labels for all axis in a figure.
    sharey : bool, default False
        In case ``subplots=True``, share y axis and set some y axis labels to invisible.
    layout : tuple, optional
        (rows, columns) for the layout of subplots.
    figsize : a tuple (width, height) in inches
        Size of a figure object.
    use_index : bool, default True
        Use index as ticks for x axis.
    title : str or list
        Title to use for the plot. If a string is passed, print the string
        at the top of the figure. If a list is passed and `subplots` is
        True, print each item in the list above the corresponding subplot.
    grid : bool, default None (matlab style default)
        Axis grid lines.
    legend : bool or {'reverse'}
        Place legend on axis subplots.
    style : list or dict
        The matplotlib line style per column.
    logx : bool or 'sym', default False
        Use log scaling or symlog scaling on x axis.
        .. versionchanged:: 0.25.0

    logy : bool or 'sym' default False
        Use log scaling or symlog scaling on y axis.
        .. versionchanged:: 0.25.0

    loglog : bool or 'sym', default False
        Use log scaling or symlog scaling on both x and y axes.
        .. versionchanged:: 0.25.0

    xticks : sequence
        Values to use for the xticks.
    yticks : sequence
        Values to use for the yticks.
    xlim : 2-tuple/list
        Set the x limits of the current axes.
    ylim : 2-tuple/list
        Set the y limits of the current axes.
    xlabel : label, optional
        Name to use for the xlabel on x-axis. Default uses index name as xlabel, or the
        x-column name for planar plots.

        .. versionadded:: 1.1.0

        .. versionchanged:: 1.2.0

           Now applicable to planar plots (`scatter`, `hexbin`).

    ylabel : label, optional
        Name to use for the ylabel on y-axis. Default will show no ylabel, or the
        y-column name for planar plots.

        .. versionadded:: 1.1.0

        .. versionchanged:: 1.2.0

           Now applicable to planar plots (`scatter`, `hexbin`).

    rot : int, default None
        Rotation for ticks (xticks for vertical, yticks for horizontal
        plots).
    fontsize : int, default None
        Font size for xticks and yticks.
    colormap : str or matplotlib colormap object, default None
        Colormap to select colors from. If string, load colormap with that
        name from matplotlib.
    colorbar : bool, optional
        If True, plot colorbar (only relevant for 'scatter' and 'hexbin'
        plots).
    position : float
        Specify relative alignments for bar plot layout.
        From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5
        (center).
    table : bool, Series or DataFrame, default False
        If True, draw a table using the data in the DataFrame and the data
        will be transposed to meet matplotlib's default layout.
        If a Series or DataFrame is passed, use passed data to draw a
        table.
    yerr : DataFrame, Series, array-like, dict and str
        See :ref:`Plotting with Error Bars <visualization.errorbars>` for
        detail.
    xerr : DataFrame, Series, array-like, dict and str
        Equivalent to yerr.
    stacked : bool, default False in line and bar plots, and True in area plot
        If True, create stacked plot.
    sort_columns : bool, default False
        Sort column names to determine plot ordering.

        .. deprecated:: 1.5.0
            The `sort_columns` arguments is deprecated and will be removed in a
            future version.

    secondary_y : bool or sequence, default False
        Whether to plot on the secondary y-axis if a list/tuple, which
        columns to plot on secondary y-axis.
    mark_right : bool, default True
        When using a secondary_y axis, automatically mark the column
        labels with "(right)" in the legend.
    include_bool : bool, default is False
        If True, boolean values can be plotted.
    backend : str, default None
        Backend to use instead of the backend specified in the option
        ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
        specify the ``plotting.backend`` for the whole session, set
        ``pd.options.plotting.backend``.

        .. versionadded:: 1.0.0

    **kwargs
        Options to pass to matplotlib plotting method.

    Returns
    -------
    :class:`matplotlib.axes.Axes` or numpy.ndarray of them
        If the backend is not the default matplotlib one, the return value
        will be the object returned by the backend.

    Notes
    -----
    - See matplotlib documentation online for more on this subject
    - If `kind` = 'bar' or 'barh', you can specify relative alignments
      for bar plot layout by `position` keyword.
      From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5
      (center)
    

127. pop
        Return item and drop from frame. Raise KeyError if not found.

        Parameters
        ----------
        item : label
            Label of column to be popped.

        Returns
        -------
        Series

        Examples
        --------
        >>> df = pd.DataFrame([('falcon', 'bird', 389.0),
        ...                    ('parrot', 'bird', 24.0),
        ...                    ('lion', 'mammal', 80.5),
        ...                    ('monkey', 'mammal', np.nan)],
        ...                   columns=('name', 'class', 'max_speed'))
        >>> df
             name   class  max_speed
        0  falcon    bird      389.0
        1  parrot    bird       24.0
        2    lion  mammal       80.5
        3  monkey  mammal        NaN

        >>> df.pop('class')
        0      bird
        1      bird
        2    mammal
        3    mammal
        Name: class, dtype: object

        >>> df
             name  max_speed
        0  falcon      389.0
        1  parrot       24.0
        2    lion       80.5
        3  monkey        NaN
        

128. pow
Get Exponential power of dataframe and other, element-wise (binary operator `pow`).

Equivalent to ``dataframe ** other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rpow`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


129. prod
Return the product of the values over the requested axis.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

min_count : int, default 0
    The required number of valid values to perform the operation. If fewer than
    ``min_count`` non-NA values are present the result will be NA.
**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)

See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.

Examples
--------
By default, the product of an empty or all-NA Series is ``1``

>>> pd.Series([], dtype="float64").prod()
1.0

This can be controlled with the ``min_count`` parameter

>>> pd.Series([], dtype="float64").prod(min_count=1)
nan

Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
empty series identically.

>>> pd.Series([np.nan]).prod()
1.0

>>> pd.Series([np.nan]).prod(min_count=1)
nan


130. product
Return the product of the values over the requested axis.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

min_count : int, default 0
    The required number of valid values to perform the operation. If fewer than
    ``min_count`` non-NA values are present the result will be NA.
**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)

See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.

Examples
--------
By default, the product of an empty or all-NA Series is ``1``

>>> pd.Series([], dtype="float64").prod()
1.0

This can be controlled with the ``min_count`` parameter

>>> pd.Series([], dtype="float64").prod(min_count=1)
nan

Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
empty series identically.

>>> pd.Series([np.nan]).prod()
1.0

>>> pd.Series([np.nan]).prod(min_count=1)
nan


131. quantile
        Return values at the given quantile over requested axis.

        Parameters
        ----------
        q : float or array-like, default 0.5 (50% quantile)
            Value between 0 <= q <= 1, the quantile(s) to compute.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
        numeric_only : bool, default True
            If False, the quantile of datetime and timedelta data will be
            computed as well.

            .. deprecated:: 1.5.0
                The default value of ``numeric_only`` will be ``False`` in a future
                version of pandas.

        interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
            This optional parameter specifies the interpolation method to use,
            when the desired quantile lies between two data points `i` and `j`:

            * linear: `i + (j - i) * fraction`, where `fraction` is the
              fractional part of the index surrounded by `i` and `j`.
            * lower: `i`.
            * higher: `j`.
            * nearest: `i` or `j` whichever is nearest.
            * midpoint: (`i` + `j`) / 2.
        method : {'single', 'table'}, default 'single'
            Whether to compute quantiles per-column ('single') or over all columns
            ('table'). When 'table', the only allowed interpolation methods are
            'nearest', 'lower', and 'higher'.

        Returns
        -------
        Series or DataFrame

            If ``q`` is an array, a DataFrame will be returned where the
              index is ``q``, the columns are the columns of self, and the
              values are the quantiles.
            If ``q`` is a float, a Series will be returned where the
              index is the columns of self and the values are the quantiles.

        See Also
        --------
        core.window.rolling.Rolling.quantile: Rolling quantile.
        numpy.percentile: Numpy function to compute the percentile.

        Examples
        --------
        >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
        ...                   columns=['a', 'b'])
        >>> df.quantile(.1)
        a    1.3
        b    3.7
        Name: 0.1, dtype: float64
        >>> df.quantile([.1, .5])
               a     b
        0.1  1.3   3.7
        0.5  2.5  55.0

        Specifying `method='table'` will compute the quantile over all columns.

        >>> df.quantile(.1, method="table", interpolation="nearest")
        a    1
        b    1
        Name: 0.1, dtype: int64
        >>> df.quantile([.1, .5], method="table", interpolation="nearest")
             a    b
        0.1  1    1
        0.5  3  100

        Specifying `numeric_only=False` will also compute the quantile of
        datetime and timedelta data.

        >>> df = pd.DataFrame({'A': [1, 2],
        ...                    'B': [pd.Timestamp('2010'),
        ...                          pd.Timestamp('2011')],
        ...                    'C': [pd.Timedelta('1 days'),
        ...                          pd.Timedelta('2 days')]})
        >>> df.quantile(0.5, numeric_only=False)
        A                    1.5
        B    2010-07-02 12:00:00
        C        1 days 12:00:00
        Name: 0.5, dtype: object
        

132. query
        Query the columns of a DataFrame with a boolean expression.

        Parameters
        ----------
        expr : str
            The query string to evaluate.

            You can refer to variables
            in the environment by prefixing them with an '@' character like
            ``@a + b``.

            You can refer to column names that are not valid Python variable names
            by surrounding them in backticks. Thus, column names containing spaces
            or punctuations (besides underscores) or starting with digits must be
            surrounded by backticks. (For example, a column named "Area (cm^2)" would
            be referenced as ```Area (cm^2)```). Column names which are Python keywords
            (like "list", "for", "import", etc) cannot be used.

            For example, if one of your columns is called ``a a`` and you want
            to sum it with ``b``, your query should be ```a a` + b``.

            .. versionadded:: 0.25.0
                Backtick quoting introduced.

            .. versionadded:: 1.0.0
                Expanding functionality of backtick quoting for more than only spaces.

        inplace : bool
            Whether to modify the DataFrame rather than creating a new one.
        **kwargs
            See the documentation for :func:`eval` for complete details
            on the keyword arguments accepted by :meth:`DataFrame.query`.

        Returns
        -------
        DataFrame or None
            DataFrame resulting from the provided query expression or
            None if ``inplace=True``.

        See Also
        --------
        eval : Evaluate a string describing operations on
            DataFrame columns.
        DataFrame.eval : Evaluate a string describing operations on
            DataFrame columns.

        Notes
        -----
        The result of the evaluation of this expression is first passed to
        :attr:`DataFrame.loc` and if that fails because of a
        multidimensional key (e.g., a DataFrame) then the result will be passed
        to :meth:`DataFrame.__getitem__`.

        This method uses the top-level :func:`eval` function to
        evaluate the passed query.

        The :meth:`~pandas.DataFrame.query` method uses a slightly
        modified Python syntax by default. For example, the ``&`` and ``|``
        (bitwise) operators have the precedence of their boolean cousins,
        :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python,
        however the semantics are different.

        You can change the semantics of the expression by passing the keyword
        argument ``parser='python'``. This enforces the same semantics as
        evaluation in Python space. Likewise, you can pass ``engine='python'``
        to evaluate an expression using Python itself as a backend. This is not
        recommended as it is inefficient compared to using ``numexpr`` as the
        engine.

        The :attr:`DataFrame.index` and
        :attr:`DataFrame.columns` attributes of the
        :class:`~pandas.DataFrame` instance are placed in the query namespace
        by default, which allows you to treat both the index and columns of the
        frame as a column in the frame.
        The identifier ``index`` is used for the frame index; you can also
        use the name of the index to identify it in a query. Please note that
        Python keywords may not be used as identifiers.

        For further details and examples see the ``query`` documentation in
        :ref:`indexing <indexing.query>`.

        *Backtick quoted variables*

        Backtick quoted variables are parsed as literal Python code and
        are converted internally to a Python valid identifier.
        This can lead to the following problems.

        During parsing a number of disallowed characters inside the backtick
        quoted string are replaced by strings that are allowed as a Python identifier.
        These characters include all operators in Python, the space character, the
        question mark, the exclamation mark, the dollar sign, and the euro sign.
        For other characters that fall outside the ASCII range (U+0001..U+007F)
        and those that are not further specified in PEP 3131,
        the query parser will raise an error.
        This excludes whitespace different than the space character,
        but also the hashtag (as it is used for comments) and the backtick
        itself (backtick can also not be escaped).

        In a special case, quotes that make a pair around a backtick can
        confuse the parser.
        For example, ```it's` > `that's``` will raise an error,
        as it forms a quoted string (``'s > `that'``) with a backtick inside.

        See also the Python documentation about lexical analysis
        (https://docs.python.org/3/reference/lexical_analysis.html)
        in combination with the source code in :mod:`pandas.core.computation.parsing`.

        Examples
        --------
        >>> df = pd.DataFrame({'A': range(1, 6),
        ...                    'B': range(10, 0, -2),
        ...                    'C C': range(10, 5, -1)})
        >>> df
           A   B  C C
        0  1  10   10
        1  2   8    9
        2  3   6    8
        3  4   4    7
        4  5   2    6
        >>> df.query('A > B')
           A  B  C C
        4  5  2    6

        The previous expression is equivalent to

        >>> df[df.A > df.B]
           A  B  C C
        4  5  2    6

        For columns with spaces in their name, you can use backtick quoting.

        >>> df.query('B == `C C`')
           A   B  C C
        0  1  10   10

        The previous expression is equivalent to

        >>> df[df.B == df['C C']]
           A   B  C C
        0  1  10   10
        

133. radd
Get Addition of dataframe and other, element-wise (binary operator `radd`).

Equivalent to ``other + dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `add`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


134. rank
        Compute numerical data ranks (1 through n) along axis.

        By default, equal values are assigned a rank that is the average of the
        ranks of those values.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Index to direct ranking.
            For `Series` this parameter is unused and defaults to 0.
        method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
            How to rank the group of records that have the same value (i.e. ties):

            * average: average rank of the group
            * min: lowest rank in the group
            * max: highest rank in the group
            * first: ranks assigned in order they appear in the array
            * dense: like 'min', but rank always increases by 1 between groups.

        numeric_only : bool, optional
            For DataFrame objects, rank only numeric columns if set to True.
        na_option : {'keep', 'top', 'bottom'}, default 'keep'
            How to rank NaN values:

            * keep: assign NaN rank to NaN values
            * top: assign lowest rank to NaN values
            * bottom: assign highest rank to NaN values

        ascending : bool, default True
            Whether or not the elements should be ranked in ascending order.
        pct : bool, default False
            Whether or not to display the returned rankings in percentile
            form.

        Returns
        -------
        same type as caller
            Return a Series or DataFrame with data ranks as values.

        See Also
        --------
        core.groupby.GroupBy.rank : Rank of values within each group.

        Examples
        --------
        >>> df = pd.DataFrame(data={'Animal': ['cat', 'penguin', 'dog',
        ...                                    'spider', 'snake'],
        ...                         'Number_legs': [4, 2, 4, 8, np.nan]})
        >>> df
            Animal  Number_legs
        0      cat          4.0
        1  penguin          2.0
        2      dog          4.0
        3   spider          8.0
        4    snake          NaN

        Ties are assigned the mean of the ranks (by default) for the group.

        >>> s = pd.Series(range(5), index=list("abcde"))
        >>> s["d"] = s["b"]
        >>> s.rank()
        a    1.0
        b    2.5
        c    4.0
        d    2.5
        e    5.0
        dtype: float64

        The following example shows how the method behaves with the above
        parameters:

        * default_rank: this is the default behaviour obtained without using
          any parameter.
        * max_rank: setting ``method = 'max'`` the records that have the
          same values are ranked using the highest rank (e.g.: since 'cat'
          and 'dog' are both in the 2nd and 3rd position, rank 3 is assigned.)
        * NA_bottom: choosing ``na_option = 'bottom'``, if there are records
          with NaN values they are placed at the bottom of the ranking.
        * pct_rank: when setting ``pct = True``, the ranking is expressed as
          percentile rank.

        >>> df['default_rank'] = df['Number_legs'].rank()
        >>> df['max_rank'] = df['Number_legs'].rank(method='max')
        >>> df['NA_bottom'] = df['Number_legs'].rank(na_option='bottom')
        >>> df['pct_rank'] = df['Number_legs'].rank(pct=True)
        >>> df
            Animal  Number_legs  default_rank  max_rank  NA_bottom  pct_rank
        0      cat          4.0           2.5       3.0        2.5     0.625
        1  penguin          2.0           1.0       1.0        1.0     0.250
        2      dog          4.0           2.5       3.0        2.5     0.625
        3   spider          8.0           4.0       4.0        4.0     1.000
        4    snake          NaN           NaN       NaN        5.0       NaN
        

135. rdiv
Get Floating division of dataframe and other, element-wise (binary operator `rtruediv`).

Equivalent to ``other / dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `truediv`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


136. reindex
Conform Series/DataFrame to new index with optional filling logic.

Places NA/NaN in locations having no value in the previous index. A new object
is produced unless the new index is equivalent to the current one and
``copy=False``.

Parameters
----------

keywords for axes : array-like, optional
    New labels / index to conform to, should be specified using
    keywords. Preferably an Index object to avoid duplicating data.

method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}
    Method to use for filling holes in reindexed DataFrame.
    Please note: this is only applicable to DataFrames/Series with a
    monotonically increasing/decreasing index.

    * None (default): don't fill gaps
    * pad / ffill: Propagate last valid observation forward to next
      valid.
    * backfill / bfill: Use next valid observation to fill gap.
    * nearest: Use nearest valid observations to fill gap.

copy : bool, default True
    Return a new object, even if the passed indexes are the same.
level : int or name
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : scalar, default np.NaN
    Value to use for missing values. Defaults to NaN, but can be any
    "compatible" value.
limit : int, default None
    Maximum number of consecutive elements to forward or backward fill.
tolerance : optional
    Maximum distance between original and new labels for inexact
    matches. The values of the index at the matching locations most
    satisfy the equation ``abs(index[indexer] - target) <= tolerance``.

    Tolerance may be a scalar value, which applies the same tolerance
    to all values, or list-like, which applies variable tolerance per
    element. List-like includes list, tuple, array, Series, and must be
    the same size as the index and its dtype must exactly match the
    index's type.

Returns
-------
Series/DataFrame with changed index.

See Also
--------
DataFrame.set_index : Set row labels.
DataFrame.reset_index : Remove row labels or move them to new columns.
DataFrame.reindex_like : Change to same indices as other DataFrame.

Examples
--------
``DataFrame.reindex`` supports two calling conventions

* ``(index=index_labels, columns=column_labels, ...)``
* ``(labels, axis={'index', 'columns'}, ...)``

We *highly* recommend using keyword arguments to clarify your
intent.

Create a dataframe with some fictional data.

>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({'http_status': [200, 200, 404, 404, 301],
...                   'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]},
...                   index=index)
>>> df
           http_status  response_time
Firefox            200           0.04
Chrome             200           0.02
Safari             404           0.07
IE10               404           0.08
Konqueror          301           1.00

Create a new index and reindex the dataframe. By default
values in the new index that do not have corresponding
records in the dataframe are assigned ``NaN``.

>>> new_index = ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
...              'Chrome']
>>> df.reindex(new_index)
               http_status  response_time
Safari               404.0           0.07
Iceweasel              NaN            NaN
Comodo Dragon          NaN            NaN
IE10                 404.0           0.08
Chrome               200.0           0.02

We can fill in the missing values by passing a value to
the keyword ``fill_value``. Because the index is not monotonically
increasing or decreasing, we cannot use arguments to the keyword
``method`` to fill the ``NaN`` values.

>>> df.reindex(new_index, fill_value=0)
               http_status  response_time
Safari                 404           0.07
Iceweasel                0           0.00
Comodo Dragon            0           0.00
IE10                   404           0.08
Chrome                 200           0.02

>>> df.reindex(new_index, fill_value='missing')
              http_status response_time
Safari                404          0.07
Iceweasel         missing       missing
Comodo Dragon     missing       missing
IE10                  404          0.08
Chrome                200          0.02

We can also reindex the columns.

>>> df.reindex(columns=['http_status', 'user_agent'])
           http_status  user_agent
Firefox            200         NaN
Chrome             200         NaN
Safari             404         NaN
IE10               404         NaN
Konqueror          301         NaN

Or we can use "axis-style" keyword arguments

>>> df.reindex(['http_status', 'user_agent'], axis="columns")
           http_status  user_agent
Firefox            200         NaN
Chrome             200         NaN
Safari             404         NaN
IE10               404         NaN
Konqueror          301         NaN

To further illustrate the filling functionality in
``reindex``, we will create a dataframe with a
monotonically increasing index (for example, a sequence
of dates).

>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
...                    index=date_index)
>>> df2
            prices
2010-01-01   100.0
2010-01-02   101.0
2010-01-03     NaN
2010-01-04   100.0
2010-01-05    89.0
2010-01-06    88.0

Suppose we decide to expand the dataframe to cover a wider
date range.

>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)
            prices
2009-12-29     NaN
2009-12-30     NaN
2009-12-31     NaN
2010-01-01   100.0
2010-01-02   101.0
2010-01-03     NaN
2010-01-04   100.0
2010-01-05    89.0
2010-01-06    88.0
2010-01-07     NaN

The index entries that did not have a value in the original data frame
(for example, '2009-12-29') are by default filled with ``NaN``.
If desired, we can fill in the missing values using one of several
options.

For example, to back-propagate the last valid value to fill the ``NaN``
values, pass ``bfill`` as an argument to the ``method`` keyword.

>>> df2.reindex(date_index2, method='bfill')
            prices
2009-12-29   100.0
2009-12-30   100.0
2009-12-31   100.0
2010-01-01   100.0
2010-01-02   101.0
2010-01-03     NaN
2010-01-04   100.0
2010-01-05    89.0
2010-01-06    88.0
2010-01-07     NaN

Please note that the ``NaN`` value present in the original dataframe
(at index value 2010-01-03) will not be filled by any of the
value propagation schemes. This is because filling while reindexing
does not look at dataframe values, but only compares the original and
desired indexes. If you do want to fill in the ``NaN`` values present
in the original dataframe, use the ``fillna()`` method.

See the :ref:`user guide <basics.reindexing>` for more.


137. reindex_like
        Return an object with matching indices as other object.

        Conform the object to the same index on all axes. Optional
        filling logic, placing NaN in locations having no value
        in the previous index. A new object is produced unless the
        new index is equivalent to the current one and copy=False.

        Parameters
        ----------
        other : Object of the same data type
            Its row and column indices are used to define the new indices
            of this object.
        method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'}
            Method to use for filling holes in reindexed DataFrame.
            Please note: this is only applicable to DataFrames/Series with a
            monotonically increasing/decreasing index.

            * None (default): don't fill gaps
            * pad / ffill: propagate last valid observation forward to next
              valid
            * backfill / bfill: use next valid observation to fill gap
            * nearest: use nearest valid observations to fill gap.

        copy : bool, default True
            Return a new object, even if the passed indexes are the same.
        limit : int, default None
            Maximum number of consecutive labels to fill for inexact matches.
        tolerance : optional
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations must
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.

            Tolerance may be a scalar value, which applies the same tolerance
            to all values, or list-like, which applies variable tolerance per
            element. List-like includes list, tuple, array, Series, and must be
            the same size as the index and its dtype must exactly match the
            index's type.

        Returns
        -------
        Series or DataFrame
            Same type as caller, but with changed indices on each axis.

        See Also
        --------
        DataFrame.set_index : Set row labels.
        DataFrame.reset_index : Remove row labels or move them to new columns.
        DataFrame.reindex : Change to new indices or expand indices.

        Notes
        -----
        Same as calling
        ``.reindex(index=other.index, columns=other.columns,...)``.

        Examples
        --------
        >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'],
        ...                     [31, 87.8, 'high'],
        ...                     [22, 71.6, 'medium'],
        ...                     [35, 95, 'medium']],
        ...                    columns=['temp_celsius', 'temp_fahrenheit',
        ...                             'windspeed'],
        ...                    index=pd.date_range(start='2014-02-12',
        ...                                        end='2014-02-15', freq='D'))

        >>> df1
                    temp_celsius  temp_fahrenheit windspeed
        2014-02-12          24.3             75.7      high
        2014-02-13          31.0             87.8      high
        2014-02-14          22.0             71.6    medium
        2014-02-15          35.0             95.0    medium

        >>> df2 = pd.DataFrame([[28, 'low'],
        ...                     [30, 'low'],
        ...                     [35.1, 'medium']],
        ...                    columns=['temp_celsius', 'windspeed'],
        ...                    index=pd.DatetimeIndex(['2014-02-12', '2014-02-13',
        ...                                            '2014-02-15']))

        >>> df2
                    temp_celsius windspeed
        2014-02-12          28.0       low
        2014-02-13          30.0       low
        2014-02-15          35.1    medium

        >>> df2.reindex_like(df1)
                    temp_celsius  temp_fahrenheit windspeed
        2014-02-12          28.0              NaN       low
        2014-02-13          30.0              NaN       low
        2014-02-14           NaN              NaN       NaN
        2014-02-15          35.1              NaN    medium
        

138. rename
        Alter axes labels.

        Function / dict values must be unique (1-to-1). Labels not contained in
        a dict / Series will be left as-is. Extra labels listed don't throw an
        error.

        See the :ref:`user guide <basics.rename>` for more.

        Parameters
        ----------
        mapper : dict-like or function
            Dict-like or function transformations to apply to
            that axis' values. Use either ``mapper`` and ``axis`` to
            specify the axis to target with ``mapper``, or ``index`` and
            ``columns``.
        index : dict-like or function
            Alternative to specifying axis (``mapper, axis=0``
            is equivalent to ``index=mapper``).
        columns : dict-like or function
            Alternative to specifying axis (``mapper, axis=1``
            is equivalent to ``columns=mapper``).
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Axis to target with ``mapper``. Can be either the axis name
            ('index', 'columns') or number (0, 1). The default is 'index'.
        copy : bool, default True
            Also copy underlying data.
        inplace : bool, default False
            Whether to modify the DataFrame rather than creating a new one.
            If True then value of copy is ignored.
        level : int or level name, default None
            In case of a MultiIndex, only rename labels in the specified
            level.
        errors : {'ignore', 'raise'}, default 'ignore'
            If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`,
            or `columns` contains labels that are not present in the Index
            being transformed.
            If 'ignore', existing keys will be renamed and extra keys will be
            ignored.

        Returns
        -------
        DataFrame or None
            DataFrame with the renamed axis labels or None if ``inplace=True``.

        Raises
        ------
        KeyError
            If any of the labels is not found in the selected axis and
            "errors='raise'".

        See Also
        --------
        DataFrame.rename_axis : Set the name of the axis.

        Examples
        --------
        ``DataFrame.rename`` supports two calling conventions

        * ``(index=index_mapper, columns=columns_mapper, ...)``
        * ``(mapper, axis={'index', 'columns'}, ...)``

        We *highly* recommend using keyword arguments to clarify your
        intent.

        Rename columns using a mapping:

        >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
        >>> df.rename(columns={"A": "a", "B": "c"})
           a  c
        0  1  4
        1  2  5
        2  3  6

        Rename index using a mapping:

        >>> df.rename(index={0: "x", 1: "y", 2: "z"})
           A  B
        x  1  4
        y  2  5
        z  3  6

        Cast index labels to a different type:

        >>> df.index
        RangeIndex(start=0, stop=3, step=1)
        >>> df.rename(index=str).index
        Index(['0', '1', '2'], dtype='object')

        >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise")
        Traceback (most recent call last):
        KeyError: ['C'] not found in axis

        Using axis-style parameters:

        >>> df.rename(str.lower, axis='columns')
           a  b
        0  1  4
        1  2  5
        2  3  6

        >>> df.rename({1: 2, 2: 4}, axis='index')
           A  B
        0  1  4
        2  2  5
        4  3  6
        

139. rename_axis
        Set the name of the axis for the index or columns.

        Parameters
        ----------
        mapper : scalar, list-like, optional
            Value to set the axis name attribute.
        index, columns : scalar, list-like, dict-like or function, optional
            A scalar, list-like, dict-like or functions transformations to
            apply to that axis' values.
            Note that the ``columns`` parameter is not allowed if the
            object is a Series. This parameter only apply for DataFrame
            type objects.

            Use either ``mapper`` and ``axis`` to
            specify the axis to target with ``mapper``, or ``index``
            and/or ``columns``.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            The axis to rename. For `Series` this parameter is unused and defaults to 0.
        copy : bool, default True
            Also copy underlying data.
        inplace : bool, default False
            Modifies the object directly, instead of creating a new Series
            or DataFrame.

        Returns
        -------
        Series, DataFrame, or None
            The same type as the caller or None if ``inplace=True``.

        See Also
        --------
        Series.rename : Alter Series index labels or name.
        DataFrame.rename : Alter DataFrame index labels or name.
        Index.rename : Set new names on index.

        Notes
        -----
        ``DataFrame.rename_axis`` supports two calling conventions

        * ``(index=index_mapper, columns=columns_mapper, ...)``
        * ``(mapper, axis={'index', 'columns'}, ...)``

        The first calling convention will only modify the names of
        the index and/or the names of the Index object that is the columns.
        In this case, the parameter ``copy`` is ignored.

        The second calling convention will modify the names of the
        corresponding index if mapper is a list or a scalar.
        However, if mapper is dict-like or a function, it will use the
        deprecated behavior of modifying the axis *labels*.

        We *highly* recommend using keyword arguments to clarify your
        intent.

        Examples
        --------
        **Series**

        >>> s = pd.Series(["dog", "cat", "monkey"])
        >>> s
        0       dog
        1       cat
        2    monkey
        dtype: object
        >>> s.rename_axis("animal")
        animal
        0    dog
        1    cat
        2    monkey
        dtype: object

        **DataFrame**

        >>> df = pd.DataFrame({"num_legs": [4, 4, 2],
        ...                    "num_arms": [0, 0, 2]},
        ...                   ["dog", "cat", "monkey"])
        >>> df
                num_legs  num_arms
        dog            4         0
        cat            4         0
        monkey         2         2
        >>> df = df.rename_axis("animal")
        >>> df
                num_legs  num_arms
        animal
        dog            4         0
        cat            4         0
        monkey         2         2
        >>> df = df.rename_axis("limbs", axis="columns")
        >>> df
        limbs   num_legs  num_arms
        animal
        dog            4         0
        cat            4         0
        monkey         2         2

        **MultiIndex**

        >>> df.index = pd.MultiIndex.from_product([['mammal'],
        ...                                        ['dog', 'cat', 'monkey']],
        ...                                       names=['type', 'name'])
        >>> df
        limbs          num_legs  num_arms
        type   name
        mammal dog            4         0
               cat            4         0
               monkey         2         2

        >>> df.rename_axis(index={'type': 'class'})
        limbs          num_legs  num_arms
        class  name
        mammal dog            4         0
               cat            4         0
               monkey         2         2

        >>> df.rename_axis(columns=str.upper)
        LIMBS          num_legs  num_arms
        type   name
        mammal dog            4         0
               cat            4         0
               monkey         2         2
        

140. reorder_levels
        Rearrange index levels using input order. May not drop or duplicate levels.

        Parameters
        ----------
        order : list of int or list of str
            List representing new level order. Reference level by number
            (position) or by key (label).
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Where to reorder levels.

        Returns
        -------
        DataFrame

        Examples
        --------
        >>> data = {
        ...     "class": ["Mammals", "Mammals", "Reptiles"],
        ...     "diet": ["Omnivore", "Carnivore", "Carnivore"],
        ...     "species": ["Humans", "Dogs", "Snakes"],
        ... }
        >>> df = pd.DataFrame(data, columns=["class", "diet", "species"])
        >>> df = df.set_index(["class", "diet"])
        >>> df
                                          species
        class      diet
        Mammals    Omnivore                Humans
                   Carnivore                 Dogs
        Reptiles   Carnivore               Snakes

        Let's reorder the levels of the index:

        >>> df.reorder_levels(["diet", "class"])
                                          species
        diet      class
        Omnivore  Mammals                  Humans
        Carnivore Mammals                    Dogs
                  Reptiles                 Snakes
        

141. replace
    Replace values given in `to_replace` with `value`.

    Values of the DataFrame are replaced with other values dynamically.
    
    This differs from updating with ``.loc`` or ``.iloc``, which require
    you to specify a location to update with some value.

    Parameters
    ----------
    to_replace : str, regex, list, dict, Series, int, float, or None
        How to find the values that will be replaced.

        * numeric, str or regex:

            - numeric: numeric values equal to `to_replace` will be
              replaced with `value`
            - str: string exactly matching `to_replace` will be replaced
              with `value`
            - regex: regexs matching `to_replace` will be replaced with
              `value`

        * list of str, regex, or numeric:

            - First, if `to_replace` and `value` are both lists, they
              **must** be the same length.
            - Second, if ``regex=True`` then all of the strings in **both**
              lists will be interpreted as regexs otherwise they will match
              directly. This doesn't matter much for `value` since there
              are only a few possible substitution regexes you can use.
            - str, regex and numeric rules apply as above.

        * dict:

            - Dicts can be used to specify different replacement values
              for different existing values. For example,
              ``{'a': 'b', 'y': 'z'}`` replaces the value 'a' with 'b' and
              'y' with 'z'. To use a dict in this way, the optional `value`
              parameter should not be given.
            - For a DataFrame a dict can specify that different values
              should be replaced in different columns. For example,
              ``{'a': 1, 'b': 'z'}`` looks for the value 1 in column 'a'
              and the value 'z' in column 'b' and replaces these values
              with whatever is specified in `value`. The `value` parameter
              should not be ``None`` in this case. You can treat this as a
              special case of passing two lists except that you are
              specifying the column to search in.
            - For a DataFrame nested dictionaries, e.g.,
              ``{'a': {'b': np.nan}}``, are read as follows: look in column
              'a' for the value 'b' and replace it with NaN. The optional `value`
              parameter should not be specified to use a nested dict in this
              way. You can nest regular expressions as well. Note that
              column names (the top-level dictionary keys in a nested
              dictionary) **cannot** be regular expressions.

        * None:

            - This means that the `regex` argument must be a string,
              compiled regular expression, or list, dict, ndarray or
              Series of such elements. If `value` is also ``None`` then
              this **must** be a nested dictionary or Series.

        See the examples section for examples of each of these.
    value : scalar, dict, list, str, regex, default None
        Value to replace any values matching `to_replace` with.
        For a DataFrame a dict of values can be used to specify which
        value to use for each column (columns not in the dict will not be
        filled). Regular expressions, strings and lists or dicts of such
        objects are also allowed.
    
    inplace : bool, default False
        Whether to modify the DataFrame rather than creating a new one.
    limit : int, default None
        Maximum size gap to forward or backward fill.
    regex : bool or same types as `to_replace`, default False
        Whether to interpret `to_replace` and/or `value` as regular
        expressions. If this is ``True`` then `to_replace` *must* be a
        string. Alternatively, this could be a regular expression or a
        list, dict, or array of regular expressions in which case
        `to_replace` must be ``None``.
    method : {'pad', 'ffill', 'bfill'}
        The method to use when for replacement, when `to_replace` is a
        scalar, list or tuple and `value` is ``None``.

        .. versionchanged:: 0.23.0
            Added to DataFrame.

    Returns
    -------
    DataFrame
        Object after replacement.

    Raises
    ------
    AssertionError
        * If `regex` is not a ``bool`` and `to_replace` is not
          ``None``.

    TypeError
        * If `to_replace` is not a scalar, array-like, ``dict``, or ``None``
        * If `to_replace` is a ``dict`` and `value` is not a ``list``,
          ``dict``, ``ndarray``, or ``Series``
        * If `to_replace` is ``None`` and `regex` is not compilable
          into a regular expression or is a list, dict, ndarray, or
          Series.
        * When replacing multiple ``bool`` or ``datetime64`` objects and
          the arguments to `to_replace` does not match the type of the
          value being replaced

    ValueError
        * If a ``list`` or an ``ndarray`` is passed to `to_replace` and
          `value` but they are not the same length.

    See Also
    --------
    DataFrame.fillna : Fill NA values.
    DataFrame.where : Replace values based on boolean condition.
    Series.str.replace : Simple string replacement.

    Notes
    -----
    * Regex substitution is performed under the hood with ``re.sub``. The
      rules for substitution for ``re.sub`` are the same.
    * Regular expressions will only substitute on strings, meaning you
      cannot provide, for example, a regular expression matching floating
      point numbers and expect the columns in your frame that have a
      numeric dtype to be matched. However, if those floating point
      numbers *are* strings, then you can do this.
    * This method has *a lot* of options. You are encouraged to experiment
      and play with this method to gain intuition about how it works.
    * When dict is used as the `to_replace` value, it is like
      key(s) in the dict are the to_replace part and
      value(s) in the dict are the value parameter.

    Examples
    --------

    **Scalar `to_replace` and `value`**

    >>> s = pd.Series([1, 2, 3, 4, 5])
    >>> s.replace(1, 5)
    0    5
    1    2
    2    3
    3    4
    4    5
    dtype: int64

    >>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
    ...                    'B': [5, 6, 7, 8, 9],
    ...                    'C': ['a', 'b', 'c', 'd', 'e']})
    >>> df.replace(0, 5)
        A  B  C
    0  5  5  a
    1  1  6  b
    2  2  7  c
    3  3  8  d
    4  4  9  e

    **List-like `to_replace`**

    >>> df.replace([0, 1, 2, 3], 4)
        A  B  C
    0  4  5  a
    1  4  6  b
    2  4  7  c
    3  4  8  d
    4  4  9  e

    >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1])
        A  B  C
    0  4  5  a
    1  3  6  b
    2  2  7  c
    3  1  8  d
    4  4  9  e

    >>> s.replace([1, 2], method='bfill')
    0    3
    1    3
    2    3
    3    4
    4    5
    dtype: int64

    **dict-like `to_replace`**

    >>> df.replace({0: 10, 1: 100})
            A  B  C
    0   10  5  a
    1  100  6  b
    2    2  7  c
    3    3  8  d
    4    4  9  e

    >>> df.replace({'A': 0, 'B': 5}, 100)
            A    B  C
    0  100  100  a
    1    1    6  b
    2    2    7  c
    3    3    8  d
    4    4    9  e

    >>> df.replace({'A': {0: 100, 4: 400}})
            A  B  C
    0  100  5  a
    1    1  6  b
    2    2  7  c
    3    3  8  d
    4  400  9  e

    **Regular expression `to_replace`**

    >>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],
    ...                    'B': ['abc', 'bar', 'xyz']})
    >>> df.replace(to_replace=r'^ba.$', value='new', regex=True)
            A    B
    0   new  abc
    1   foo  new
    2  bait  xyz

    >>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)
            A    B
    0   new  abc
    1   foo  bar
    2  bait  xyz

    >>> df.replace(regex=r'^ba.$', value='new')
            A    B
    0   new  abc
    1   foo  new
    2  bait  xyz

    >>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'})
            A    B
    0   new  abc
    1   xyz  new
    2  bait  xyz

    >>> df.replace(regex=[r'^ba.$', 'foo'], value='new')
            A    B
    0   new  abc
    1   new  new
    2  bait  xyz

    Compare the behavior of ``s.replace({'a': None})`` and
    ``s.replace('a', None)`` to understand the peculiarities
    of the `to_replace` parameter:

    >>> s = pd.Series([10, 'a', 'a', 'b', 'a'])

    When one uses a dict as the `to_replace` value, it is like the
    value(s) in the dict are equal to the `value` parameter.
    ``s.replace({'a': None})`` is equivalent to
    ``s.replace(to_replace={'a': None}, value=None, method=None)``:

    >>> s.replace({'a': None})
    0      10
    1    None
    2    None
    3       b
    4    None
    dtype: object

    When ``value`` is not explicitly passed and `to_replace` is a scalar, list
    or tuple, `replace` uses the method parameter (default 'pad') to do the
    replacement. So this is why the 'a' values are being replaced by 10
    in rows 1 and 2 and 'b' in row 4 in this case.

    >>> s.replace('a')
    0    10
    1    10
    2    10
    3     b
    4     b
    dtype: object

    On the other hand, if ``None`` is explicitly passed for ``value``, it will
    be respected:

    >>> s.replace('a', None)
    0      10
    1    None
    2    None
    3       b
    4    None
    dtype: object

        .. versionchanged:: 1.4.0
            Previously the explicit ``None`` was silently ignored.


142. resample
Resample time-series data.

Convenience method for frequency conversion and resampling of time series.
The object must have a datetime-like index (`DatetimeIndex`, `PeriodIndex`,
or `TimedeltaIndex`), or the caller must pass the label of a datetime-like
series/index to the ``on``/``level`` keyword parameter.

Parameters
----------
rule : DateOffset, Timedelta or str
    The offset string or object representing target conversion.
axis : {0 or 'index', 1 or 'columns'}, default 0
    Which axis to use for up- or down-sampling. For `Series` this parameter
    is unused and defaults to 0. Must be
    `DatetimeIndex`, `TimedeltaIndex` or `PeriodIndex`.
closed : {'right', 'left'}, default None
    Which side of bin interval is closed. The default is 'left'
    for all frequency offsets except for 'M', 'A', 'Q', 'BM',
    'BA', 'BQ', and 'W' which all have a default of 'right'.
label : {'right', 'left'}, default None
    Which bin edge label to label bucket with. The default is 'left'
    for all frequency offsets except for 'M', 'A', 'Q', 'BM',
    'BA', 'BQ', and 'W' which all have a default of 'right'.
convention : {'start', 'end', 's', 'e'}, default 'start'
    For `PeriodIndex` only, controls whether to use the start or
    end of `rule`.
kind : {'timestamp', 'period'}, optional, default None
    Pass 'timestamp' to convert the resulting index to a
    `DateTimeIndex` or 'period' to convert it to a `PeriodIndex`.
    By default the input representation is retained.
loffset : timedelta, default None
    Adjust the resampled time labels.

    .. deprecated:: 1.1.0
        You should add the loffset to the `df.index` after the resample.
        See below.

base : int, default 0
    For frequencies that evenly subdivide 1 day, the "origin" of the
    aggregated intervals. For example, for '5min' frequency, base could
    range from 0 through 4. Defaults to 0.

    .. deprecated:: 1.1.0
        The new arguments that you should use are 'offset' or 'origin'.

on : str, optional
    For a DataFrame, column to use instead of index for resampling.
    Column must be datetime-like.
level : str or int, optional
    For a MultiIndex, level (name or number) to use for
    resampling. `level` must be datetime-like.
origin : Timestamp or str, default 'start_day'
    The timestamp on which to adjust the grouping. The timezone of origin
    must match the timezone of the index.
    If string, must be one of the following:

    - 'epoch': `origin` is 1970-01-01
    - 'start': `origin` is the first value of the timeseries
    - 'start_day': `origin` is the first day at midnight of the timeseries

    .. versionadded:: 1.1.0

    - 'end': `origin` is the last value of the timeseries
    - 'end_day': `origin` is the ceiling midnight of the last day

    .. versionadded:: 1.3.0

offset : Timedelta or str, default is None
    An offset timedelta added to the origin.

    .. versionadded:: 1.1.0

group_keys : bool, optional
    Whether to include the group keys in the result index when using
    ``.apply()`` on the resampled object. Not specifying ``group_keys``
    will retain values-dependent behavior from pandas 1.4
    and earlier (see :ref:`pandas 1.5.0 Release notes
    <whatsnew_150.enhancements.resample_group_keys>`
    for examples). In a future version of pandas, the behavior will
    default to the same as specifying ``group_keys=False``.

    .. versionadded:: 1.5.0

Returns
-------
pandas.core.Resampler
    :class:`~pandas.core.Resampler` object.

See Also
--------
Series.resample : Resample a Series.
DataFrame.resample : Resample a DataFrame.
groupby : Group DataFrame by mapping, function, label, or list of labels.
asfreq : Reindex a DataFrame with the given frequency without grouping.

Notes
-----
See the `user guide
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling>`__
for more.

To learn more about the offset strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects>`__.

Examples
--------
Start by creating a series with 9 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00    0
2000-01-01 00:01:00    1
2000-01-01 00:02:00    2
2000-01-01 00:03:00    3
2000-01-01 00:04:00    4
2000-01-01 00:05:00    5
2000-01-01 00:06:00    6
2000-01-01 00:07:00    7
2000-01-01 00:08:00    8
Freq: T, dtype: int64

Downsample the series into 3 minute bins and sum the values
of the timestamps falling into a bin.

>>> series.resample('3T').sum()
2000-01-01 00:00:00     3
2000-01-01 00:03:00    12
2000-01-01 00:06:00    21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but label each
bin using the right edge instead of the left. Please note that the
value in the bucket used as the label is not included in the bucket,
which it labels. For example, in the original series the
bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed
value in the resampled bucket with the label ``2000-01-01 00:03:00``
does not include 3 (if it did, the summed value would be 6, not 3).
To include this value close the right side of the bin interval as
illustrated in the example below this one.

>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00     3
2000-01-01 00:06:00    12
2000-01-01 00:09:00    21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but close the right
side of the bin interval.

>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00     0
2000-01-01 00:03:00     6
2000-01-01 00:06:00    15
2000-01-01 00:09:00    15
Freq: 3T, dtype: int64

Upsample the series into 30 second bins.

>>> series.resample('30S').asfreq()[0:5]   # Select first 5 rows
2000-01-01 00:00:00   0.0
2000-01-01 00:00:30   NaN
2000-01-01 00:01:00   1.0
2000-01-01 00:01:30   NaN
2000-01-01 00:02:00   2.0
Freq: 30S, dtype: float64

Upsample the series into 30 second bins and fill the ``NaN``
values using the ``ffill`` method.

>>> series.resample('30S').ffill()[0:5]
2000-01-01 00:00:00    0
2000-01-01 00:00:30    0
2000-01-01 00:01:00    1
2000-01-01 00:01:30    1
2000-01-01 00:02:00    2
Freq: 30S, dtype: int64

Upsample the series into 30 second bins and fill the
``NaN`` values using the ``bfill`` method.

>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00    0
2000-01-01 00:00:30    1
2000-01-01 00:01:00    1
2000-01-01 00:01:30    2
2000-01-01 00:02:00    2
Freq: 30S, dtype: int64

Pass a custom function via ``apply``

>>> def custom_resampler(arraylike):
...     return np.sum(arraylike) + 5
...
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00     8
2000-01-01 00:03:00    17
2000-01-01 00:06:00    26
Freq: 3T, dtype: int64

For a Series with a PeriodIndex, the keyword `convention` can be
used to control whether to use the start or end of `rule`.

Resample a year by quarter using 'start' `convention`. Values are
assigned to the first quarter of the period.

>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
...                                             freq='A',
...                                             periods=2))
>>> s
2012    1
2013    2
Freq: A-DEC, dtype: int64
>>> s.resample('Q', convention='start').asfreq()
2012Q1    1.0
2012Q2    NaN
2012Q3    NaN
2012Q4    NaN
2013Q1    2.0
2013Q2    NaN
2013Q3    NaN
2013Q4    NaN
Freq: Q-DEC, dtype: float64

Resample quarters by month using 'end' `convention`. Values are
assigned to the last month of the period.

>>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01',
...                                                   freq='Q',
...                                                   periods=4))
>>> q
2018Q1    1
2018Q2    2
2018Q3    3
2018Q4    4
Freq: Q-DEC, dtype: int64
>>> q.resample('M', convention='end').asfreq()
2018-03    1.0
2018-04    NaN
2018-05    NaN
2018-06    2.0
2018-07    NaN
2018-08    NaN
2018-09    3.0
2018-10    NaN
2018-11    NaN
2018-12    4.0
Freq: M, dtype: float64

For DataFrame objects, the keyword `on` can be used to specify the
column instead of the index for resampling.

>>> d = {'price': [10, 11, 9, 13, 14, 18, 17, 19],
...      'volume': [50, 60, 40, 100, 50, 100, 40, 50]}
>>> df = pd.DataFrame(d)
>>> df['week_starting'] = pd.date_range('01/01/2018',
...                                     periods=8,
...                                     freq='W')
>>> df
   price  volume week_starting
0     10      50    2018-01-07
1     11      60    2018-01-14
2      9      40    2018-01-21
3     13     100    2018-01-28
4     14      50    2018-02-04
5     18     100    2018-02-11
6     17      40    2018-02-18
7     19      50    2018-02-25
>>> df.resample('M', on='week_starting').mean()
               price  volume
week_starting
2018-01-31     10.75    62.5
2018-02-28     17.00    60.0

For a DataFrame with MultiIndex, the keyword `level` can be used to
specify on which level the resampling needs to take place.

>>> days = pd.date_range('1/1/2000', periods=4, freq='D')
>>> d2 = {'price': [10, 11, 9, 13, 14, 18, 17, 19],
...       'volume': [50, 60, 40, 100, 50, 100, 40, 50]}
>>> df2 = pd.DataFrame(
...     d2,
...     index=pd.MultiIndex.from_product(
...         [days, ['morning', 'afternoon']]
...     )
... )
>>> df2
                      price  volume
2000-01-01 morning       10      50
           afternoon     11      60
2000-01-02 morning        9      40
           afternoon     13     100
2000-01-03 morning       14      50
           afternoon     18     100
2000-01-04 morning       17      40
           afternoon     19      50
>>> df2.resample('D', level=0).sum()
            price  volume
2000-01-01     21     110
2000-01-02     22     140
2000-01-03     32     150
2000-01-04     36      90

If you want to adjust the start of the bins based on a fixed timestamp:

>>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00'
>>> rng = pd.date_range(start, end, freq='7min')
>>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng)
>>> ts
2000-10-01 23:30:00     0
2000-10-01 23:37:00     3
2000-10-01 23:44:00     6
2000-10-01 23:51:00     9
2000-10-01 23:58:00    12
2000-10-02 00:05:00    15
2000-10-02 00:12:00    18
2000-10-02 00:19:00    21
2000-10-02 00:26:00    24
Freq: 7T, dtype: int64

>>> ts.resample('17min').sum()
2000-10-01 23:14:00     0
2000-10-01 23:31:00     9
2000-10-01 23:48:00    21
2000-10-02 00:05:00    54
2000-10-02 00:22:00    24
Freq: 17T, dtype: int64

>>> ts.resample('17min', origin='epoch').sum()
2000-10-01 23:18:00     0
2000-10-01 23:35:00    18
2000-10-01 23:52:00    27
2000-10-02 00:09:00    39
2000-10-02 00:26:00    24
Freq: 17T, dtype: int64

>>> ts.resample('17min', origin='2000-01-01').sum()
2000-10-01 23:24:00     3
2000-10-01 23:41:00    15
2000-10-01 23:58:00    45
2000-10-02 00:15:00    45
Freq: 17T, dtype: int64

If you want to adjust the start of the bins with an `offset` Timedelta, the two
following lines are equivalent:

>>> ts.resample('17min', origin='start').sum()
2000-10-01 23:30:00     9
2000-10-01 23:47:00    21
2000-10-02 00:04:00    54
2000-10-02 00:21:00    24
Freq: 17T, dtype: int64

>>> ts.resample('17min', offset='23h30min').sum()
2000-10-01 23:30:00     9
2000-10-01 23:47:00    21
2000-10-02 00:04:00    54
2000-10-02 00:21:00    24
Freq: 17T, dtype: int64

If you want to take the largest Timestamp as the end of the bins:

>>> ts.resample('17min', origin='end').sum()
2000-10-01 23:35:00     0
2000-10-01 23:52:00    18
2000-10-02 00:09:00    27
2000-10-02 00:26:00    63
Freq: 17T, dtype: int64

In contrast with the `start_day`, you can use `end_day` to take the ceiling
midnight of the largest Timestamp as the end of the bins and drop the bins
not containing data:

>>> ts.resample('17min', origin='end_day').sum()
2000-10-01 23:38:00     3
2000-10-01 23:55:00    15
2000-10-02 00:12:00    45
2000-10-02 00:29:00    45
Freq: 17T, dtype: int64

To replace the use of the deprecated `base` argument, you can now use `offset`,
in this example it is equivalent to have `base=2`:

>>> ts.resample('17min', offset='2min').sum()
2000-10-01 23:16:00     0
2000-10-01 23:33:00     9
2000-10-01 23:50:00    36
2000-10-02 00:07:00    39
2000-10-02 00:24:00    24
Freq: 17T, dtype: int64

To replace the use of the deprecated `loffset` argument:

>>> from pandas.tseries.frequencies import to_offset
>>> loffset = '19min'
>>> ts_out = ts.resample('17min').sum()
>>> ts_out.index = ts_out.index + to_offset(loffset)
>>> ts_out
2000-10-01 23:33:00     0
2000-10-01 23:50:00     9
2000-10-02 00:07:00    21
2000-10-02 00:24:00    54
2000-10-02 00:41:00    24
Freq: 17T, dtype: int64


143. reset_index
        Reset the index, or a level of it.

        Reset the index of the DataFrame, and use the default one instead.
        If the DataFrame has a MultiIndex, this method can remove one or more
        levels.

        Parameters
        ----------
        level : int, str, tuple, or list, default None
            Only remove the given levels from the index. Removes all levels by
            default.
        drop : bool, default False
            Do not try to insert index into dataframe columns. This resets
            the index to the default integer index.
        inplace : bool, default False
            Whether to modify the DataFrame rather than creating a new one.
        col_level : int or str, default 0
            If the columns have multiple levels, determines which level the
            labels are inserted into. By default it is inserted into the first
            level.
        col_fill : object, default ''
            If the columns have multiple levels, determines how the other
            levels are named. If None then the index name is repeated.
        allow_duplicates : bool, optional, default lib.no_default
            Allow duplicate column labels to be created.

            .. versionadded:: 1.5.0

        names : int, str or 1-dimensional list, default None
            Using the given string, rename the DataFrame column which contains the
            index data. If the DataFrame has a MultiIndex, this has to be a list or
            tuple with length equal to the number of levels.

            .. versionadded:: 1.5.0

        Returns
        -------
        DataFrame or None
            DataFrame with the new index or None if ``inplace=True``.

        See Also
        --------
        DataFrame.set_index : Opposite of reset_index.
        DataFrame.reindex : Change to new indices or expand indices.
        DataFrame.reindex_like : Change to same indices as other DataFrame.

        Examples
        --------
        >>> df = pd.DataFrame([('bird', 389.0),
        ...                    ('bird', 24.0),
        ...                    ('mammal', 80.5),
        ...                    ('mammal', np.nan)],
        ...                   index=['falcon', 'parrot', 'lion', 'monkey'],
        ...                   columns=('class', 'max_speed'))
        >>> df
                 class  max_speed
        falcon    bird      389.0
        parrot    bird       24.0
        lion    mammal       80.5
        monkey  mammal        NaN

        When we reset the index, the old index is added as a column, and a
        new sequential index is used:

        >>> df.reset_index()
            index   class  max_speed
        0  falcon    bird      389.0
        1  parrot    bird       24.0
        2    lion  mammal       80.5
        3  monkey  mammal        NaN

        We can use the `drop` parameter to avoid the old index being added as
        a column:

        >>> df.reset_index(drop=True)
            class  max_speed
        0    bird      389.0
        1    bird       24.0
        2  mammal       80.5
        3  mammal        NaN

        You can also use `reset_index` with `MultiIndex`.

        >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'),
        ...                                    ('bird', 'parrot'),
        ...                                    ('mammal', 'lion'),
        ...                                    ('mammal', 'monkey')],
        ...                                   names=['class', 'name'])
        >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'),
        ...                                      ('species', 'type')])
        >>> df = pd.DataFrame([(389.0, 'fly'),
        ...                    ( 24.0, 'fly'),
        ...                    ( 80.5, 'run'),
        ...                    (np.nan, 'jump')],
        ...                   index=index,
        ...                   columns=columns)
        >>> df
                       speed species
                         max    type
        class  name
        bird   falcon  389.0     fly
               parrot   24.0     fly
        mammal lion     80.5     run
               monkey    NaN    jump

        Using the `names` parameter, choose a name for the index column:

        >>> df.reset_index(names=['classes', 'names'])
          classes   names  speed species
                             max    type
        0    bird  falcon  389.0     fly
        1    bird  parrot   24.0     fly
        2  mammal    lion   80.5     run
        3  mammal  monkey    NaN    jump

        If the index has multiple levels, we can reset a subset of them:

        >>> df.reset_index(level='class')
                 class  speed species
                          max    type
        name
        falcon    bird  389.0     fly
        parrot    bird   24.0     fly
        lion    mammal   80.5     run
        monkey  mammal    NaN    jump

        If we are not dropping the index, by default, it is placed in the top
        level. We can place it in another level:

        >>> df.reset_index(level='class', col_level=1)
                        speed species
                 class    max    type
        name
        falcon    bird  389.0     fly
        parrot    bird   24.0     fly
        lion    mammal   80.5     run
        monkey  mammal    NaN    jump

        When the index is inserted under another level, we can specify under
        which one with the parameter `col_fill`:

        >>> df.reset_index(level='class', col_level=1, col_fill='species')
                      species  speed species
                        class    max    type
        name
        falcon           bird  389.0     fly
        parrot           bird   24.0     fly
        lion           mammal   80.5     run
        monkey         mammal    NaN    jump

        If we specify a nonexistent level for `col_fill`, it is created:

        >>> df.reset_index(level='class', col_level=1, col_fill='genus')
                        genus  speed species
                        class    max    type
        name
        falcon           bird  389.0     fly
        parrot           bird   24.0     fly
        lion           mammal   80.5     run
        monkey         mammal    NaN    jump
        

144. rfloordiv
Get Integer division of dataframe and other, element-wise (binary operator `rfloordiv`).

Equivalent to ``other // dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `floordiv`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


145. rmod
Get Modulo of dataframe and other, element-wise (binary operator `rmod`).

Equivalent to ``other % dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `mod`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


146. rmul
Get Multiplication of dataframe and other, element-wise (binary operator `rmul`).

Equivalent to ``other * dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `mul`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


147. rolling
Provide rolling window calculations.

Parameters
----------
window : int, offset, or BaseIndexer subclass
    Size of the moving window.

    If an integer, the fixed number of observations used for
    each window.

    If an offset, the time period of each window. Each
    window will be a variable sized based on the observations included in
    the time-period. This is only valid for datetimelike indexes.
    To learn more about the offsets & frequency strings, please see `this link
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

    If a BaseIndexer subclass, the window boundaries
    based on the defined ``get_window_bounds`` method. Additional rolling
    keyword arguments, namely ``min_periods``, ``center``, ``closed`` and
    ``step`` will be passed to ``get_window_bounds``.

min_periods : int, default None
    Minimum number of observations in window required to have a value;
    otherwise, result is ``np.nan``.

    For a window that is specified by an offset, ``min_periods`` will default to 1.

    For a window that is specified by an integer, ``min_periods`` will default
    to the size of the window.

center : bool, default False
    If False, set the window labels as the right edge of the window index.

    If True, set the window labels as the center of the window index.

win_type : str, default None
    If ``None``, all points are evenly weighted.

    If a string, it must be a valid `scipy.signal window function
    <https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows>`__.

    Certain Scipy window types require additional parameters to be passed
    in the aggregation function. The additional parameters must match
    the keywords specified in the Scipy window type method signature.

on : str, optional
    For a DataFrame, a column label or Index level on which
    to calculate the rolling window, rather than the DataFrame's index.

    Provided integer column is ignored and excluded from result since
    an integer index is not used to calculate the rolling window.

axis : int or str, default 0
    If ``0`` or ``'index'``, roll across the rows.

    If ``1`` or ``'columns'``, roll across the columns.

    For `Series` this parameter is unused and defaults to 0.

closed : str, default None
    If ``'right'``, the first point in the window is excluded from calculations.

    If ``'left'``, the last point in the window is excluded from calculations.

    If ``'both'``, the no points in the window are excluded from calculations.

    If ``'neither'``, the first and last points in the window are excluded
    from calculations.

    Default ``None`` (``'right'``).

    .. versionchanged:: 1.2.0

        The closed parameter with fixed windows is now supported.

step : int, default None

    ..versionadded:: 1.5.0

    Evaluate the window at every ``step`` result, equivalent to slicing as
    ``[::step]``. ``window`` must be an integer. Using a step argument other
    than None or 1 will produce a result with a different shape than the input.

method : str {'single', 'table'}, default 'single'

    .. versionadded:: 1.3.0

    Execute the rolling operation per single column or row (``'single'``)
    or over the entire object (``'table'``).

    This argument is only implemented when specifying ``engine='numba'``
    in the method call.

Returns
-------
``Window`` subclass if a ``win_type`` is passed

``Rolling`` subclass if ``win_type`` is not passed

See Also
--------
expanding : Provides expanding transformations.
ewm : Provides exponential weighted functions.

Notes
-----
See :ref:`Windowing Operations <window.generic>` for further usage details
and examples.

Examples
--------
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
     B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0

**window**

Rolling sum with a window length of 2 observations.

>>> df.rolling(2).sum()
     B
0  NaN
1  1.0
2  3.0
3  NaN
4  NaN

Rolling sum with a window span of 2 seconds.

>>> df_time = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
...                        index = [pd.Timestamp('20130101 09:00:00'),
...                                 pd.Timestamp('20130101 09:00:02'),
...                                 pd.Timestamp('20130101 09:00:03'),
...                                 pd.Timestamp('20130101 09:00:05'),
...                                 pd.Timestamp('20130101 09:00:06')])

>>> df_time
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  2.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  4.0

>>> df_time.rolling('2s').sum()
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  4.0

Rolling sum with forward looking windows with 2 observations.

>>> indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=2)
>>> df.rolling(window=indexer, min_periods=1).sum()
     B
0  1.0
1  3.0
2  2.0
3  4.0
4  4.0

**min_periods**

Rolling sum with a window length of 2 observations, but only needs a minimum of 1
observation to calculate a value.

>>> df.rolling(2, min_periods=1).sum()
     B
0  0.0
1  1.0
2  3.0
3  2.0
4  4.0

**center**

Rolling sum with the result assigned to the center of the window index.

>>> df.rolling(3, min_periods=1, center=True).sum()
     B
0  1.0
1  3.0
2  3.0
3  6.0
4  4.0

>>> df.rolling(3, min_periods=1, center=False).sum()
     B
0  0.0
1  1.0
2  3.0
3  3.0
4  6.0

**step**

Rolling sum with a window length of 2 observations, minimum of 1 observation to
calculate a value, and a step of 2.

>>> df.rolling(2, min_periods=1, step=2).sum()
     B
0  0.0
2  3.0
4  4.0

**win_type**

Rolling sum with a window length of 2, using the Scipy ``'gaussian'``
window type. ``std`` is required in the aggregation function.

>>> df.rolling(2, win_type='gaussian').sum(std=3)
          B
0       NaN
1  0.986207
2  2.958621
3       NaN
4       NaN


148. round
        Round a DataFrame to a variable number of decimal places.

        Parameters
        ----------
        decimals : int, dict, Series
            Number of decimal places to round each column to. If an int is
            given, round each column to the same number of places.
            Otherwise dict and Series round to variable numbers of places.
            Column names should be in the keys if `decimals` is a
            dict-like, or in the index if `decimals` is a Series. Any
            columns not included in `decimals` will be left as is. Elements
            of `decimals` which are not columns of the input will be
            ignored.
        *args
            Additional keywords have no effect but might be accepted for
            compatibility with numpy.
        **kwargs
            Additional keywords have no effect but might be accepted for
            compatibility with numpy.

        Returns
        -------
        DataFrame
            A DataFrame with the affected columns rounded to the specified
            number of decimal places.

        See Also
        --------
        numpy.around : Round a numpy array to the given number of decimals.
        Series.round : Round a Series to the given number of decimals.

        Examples
        --------
        >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)],
        ...                   columns=['dogs', 'cats'])
        >>> df
            dogs  cats
        0  0.21  0.32
        1  0.01  0.67
        2  0.66  0.03
        3  0.21  0.18

        By providing an integer each column is rounded to the same number
        of decimal places

        >>> df.round(1)
            dogs  cats
        0   0.2   0.3
        1   0.0   0.7
        2   0.7   0.0
        3   0.2   0.2

        With a dict, the number of places for specific columns can be
        specified with the column names as key and the number of decimal
        places as value

        >>> df.round({'dogs': 1, 'cats': 0})
            dogs  cats
        0   0.2   0.0
        1   0.0   1.0
        2   0.7   0.0
        3   0.2   0.0

        Using a Series, the number of places for specific columns can be
        specified with the column names as index and the number of
        decimal places as value

        >>> decimals = pd.Series([0, 1], index=['cats', 'dogs'])
        >>> df.round(decimals)
            dogs  cats
        0   0.2   0.0
        1   0.0   1.0
        2   0.7   0.0
        3   0.2   0.0
        

149. rpow
Get Exponential power of dataframe and other, element-wise (binary operator `rpow`).

Equivalent to ``other ** dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `pow`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


150. rsub
Get Subtraction of dataframe and other, element-wise (binary operator `rsub`).

Equivalent to ``other - dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `sub`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


151. rtruediv
Get Floating division of dataframe and other, element-wise (binary operator `rtruediv`).

Equivalent to ``other / dataframe``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `truediv`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


152. sample
        Return a random sample of items from an axis of object.

        You can use `random_state` for reproducibility.

        Parameters
        ----------
        n : int, optional
            Number of items from axis to return. Cannot be used with `frac`.
            Default = 1 if `frac` = None.
        frac : float, optional
            Fraction of axis items to return. Cannot be used with `n`.
        replace : bool, default False
            Allow or disallow sampling of the same row more than once.
        weights : str or ndarray-like, optional
            Default 'None' results in equal probability weighting.
            If passed a Series, will align with target object on index. Index
            values in weights not found in sampled object will be ignored and
            index values in sampled object not in weights will be assigned
            weights of zero.
            If called on a DataFrame, will accept the name of a column
            when axis = 0.
            Unless weights are a Series, weights must be same length as axis
            being sampled.
            If weights do not sum to 1, they will be normalized to sum to 1.
            Missing values in the weights column will be treated as zero.
            Infinite values not allowed.
        random_state : int, array-like, BitGenerator, np.random.RandomState, np.random.Generator, optional
            If int, array-like, or BitGenerator, seed for random number generator.
            If np.random.RandomState or np.random.Generator, use as given.

            .. versionchanged:: 1.1.0

                array-like and BitGenerator object now passed to np.random.RandomState()
                as seed

            .. versionchanged:: 1.4.0

                np.random.Generator objects now accepted

        axis : {0 or ‘index’, 1 or ‘columns’, None}, default None
            Axis to sample. Accepts axis number or name. Default is stat axis
            for given data type. For `Series` this parameter is unused and defaults to `None`.
        ignore_index : bool, default False
            If True, the resulting index will be labeled 0, 1, …, n - 1.

            .. versionadded:: 1.3.0

        Returns
        -------
        Series or DataFrame
            A new object of same type as caller containing `n` items randomly
            sampled from the caller object.

        See Also
        --------
        DataFrameGroupBy.sample: Generates random samples from each group of a
            DataFrame object.
        SeriesGroupBy.sample: Generates random samples from each group of a
            Series object.
        numpy.random.choice: Generates a random sample from a given 1-D numpy
            array.

        Notes
        -----
        If `frac` > 1, `replacement` should be set to `True`.

        Examples
        --------
        >>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0],
        ...                    'num_wings': [2, 0, 0, 0],
        ...                    'num_specimen_seen': [10, 2, 1, 8]},
        ...                   index=['falcon', 'dog', 'spider', 'fish'])
        >>> df
                num_legs  num_wings  num_specimen_seen
        falcon         2          2                 10
        dog            4          0                  2
        spider         8          0                  1
        fish           0          0                  8

        Extract 3 random elements from the ``Series`` ``df['num_legs']``:
        Note that we use `random_state` to ensure the reproducibility of
        the examples.

        >>> df['num_legs'].sample(n=3, random_state=1)
        fish      0
        spider    8
        falcon    2
        Name: num_legs, dtype: int64

        A random 50% sample of the ``DataFrame`` with replacement:

        >>> df.sample(frac=0.5, replace=True, random_state=1)
              num_legs  num_wings  num_specimen_seen
        dog          4          0                  2
        fish         0          0                  8

        An upsample sample of the ``DataFrame`` with replacement:
        Note that `replace` parameter has to be `True` for `frac` parameter > 1.

        >>> df.sample(frac=2, replace=True, random_state=1)
                num_legs  num_wings  num_specimen_seen
        dog            4          0                  2
        fish           0          0                  8
        falcon         2          2                 10
        falcon         2          2                 10
        fish           0          0                  8
        dog            4          0                  2
        fish           0          0                  8
        dog            4          0                  2

        Using a DataFrame column as weights. Rows with larger value in the
        `num_specimen_seen` column are more likely to be sampled.

        >>> df.sample(n=2, weights='num_specimen_seen', random_state=1)
                num_legs  num_wings  num_specimen_seen
        falcon         2          2                 10
        fish           0          0                  8
        

153. select_dtypes
        Return a subset of the DataFrame's columns based on the column dtypes.

        Parameters
        ----------
        include, exclude : scalar or list-like
            A selection of dtypes or strings to be included/excluded. At least
            one of these parameters must be supplied.

        Returns
        -------
        DataFrame
            The subset of the frame including the dtypes in ``include`` and
            excluding the dtypes in ``exclude``.

        Raises
        ------
        ValueError
            * If both of ``include`` and ``exclude`` are empty
            * If ``include`` and ``exclude`` have overlapping elements
            * If any kind of string dtype is passed in.

        See Also
        --------
        DataFrame.dtypes: Return Series with the data type of each column.

        Notes
        -----
        * To select all *numeric* types, use ``np.number`` or ``'number'``
        * To select strings you must use the ``object`` dtype, but note that
          this will return *all* object dtype columns
        * See the `numpy dtype hierarchy
          <https://numpy.org/doc/stable/reference/arrays.scalars.html>`__
        * To select datetimes, use ``np.datetime64``, ``'datetime'`` or
          ``'datetime64'``
        * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
          ``'timedelta64'``
        * To select Pandas categorical dtypes, use ``'category'``
        * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
          0.20.0) or ``'datetime64[ns, tz]'``

        Examples
        --------
        >>> df = pd.DataFrame({'a': [1, 2] * 3,
        ...                    'b': [True, False] * 3,
        ...                    'c': [1.0, 2.0] * 3})
        >>> df
                a      b  c
        0       1   True  1.0
        1       2  False  2.0
        2       1   True  1.0
        3       2  False  2.0
        4       1   True  1.0
        5       2  False  2.0

        >>> df.select_dtypes(include='bool')
           b
        0  True
        1  False
        2  True
        3  False
        4  True
        5  False

        >>> df.select_dtypes(include=['float64'])
           c
        0  1.0
        1  2.0
        2  1.0
        3  2.0
        4  1.0
        5  2.0

        >>> df.select_dtypes(exclude=['int64'])
               b    c
        0   True  1.0
        1  False  2.0
        2   True  1.0
        3  False  2.0
        4   True  1.0
        5  False  2.0
        

154. sem
Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
----------
axis : {index (0), columns (1)}
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values. If an entire row/column is NA, the result
    will be NA.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
ddof : int, default 1
    Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
    where N represents the number of elements.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

Returns
-------
Series or DataFrame (if level specified) 


155. set_axis
Assign desired index to given axis.

Indexes for column or row labels can be changed by assigning
a list-like or Index.

Parameters
----------
labels : list-like, Index
    The values for the new index.

axis : {0 or 'index', 1 or 'columns'}, default 0
    The axis to update. The value 0 identifies the rows. For `Series`
    this parameter is unused and defaults to 0.

inplace : bool, default False
    Whether to return a new DataFrame instance.

    .. deprecated:: 1.5.0

copy : bool, default True
    Whether to make a copy of the underlying data.

    .. versionadded:: 1.5.0

Returns
-------
renamed : DataFrame or None
    An object of type DataFrame or None if ``inplace=True``.

See Also
--------
DataFrame.rename_axis : Alter the name of the index or columns.

        Examples
        --------
        >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

        Change the row labels.

        >>> df.set_axis(['a', 'b', 'c'], axis='index')
           A  B
        a  1  4
        b  2  5
        c  3  6

        Change the column labels.

        >>> df.set_axis(['I', 'II'], axis='columns')
           I  II
        0  1   4
        1  2   5
        2  3   6

        Now, update the labels without copying the underlying data.

        >>> df.set_axis(['i', 'ii'], axis='columns', copy=False)
           i  ii
        0  1   4
        1  2   5
        2  3   6


156. set_flags
        Return a new object with updated flags.

        Parameters
        ----------
        allows_duplicate_labels : bool, optional
            Whether the returned object allows duplicate labels.

        Returns
        -------
        Series or DataFrame
            The same type as the caller.

        See Also
        --------
        DataFrame.attrs : Global metadata applying to this dataset.
        DataFrame.flags : Global flags applying to this object.

        Notes
        -----
        This method returns a new object that's a view on the same data
        as the input. Mutating the input or the output values will be reflected
        in the other.

        This method is intended to be used in method chains.

        "Flags" differ from "metadata". Flags reflect properties of the
        pandas object (the Series or DataFrame). Metadata refer to properties
        of the dataset, and should be stored in :attr:`DataFrame.attrs`.

        Examples
        --------
        >>> df = pd.DataFrame({"A": [1, 2]})
        >>> df.flags.allows_duplicate_labels
        True
        >>> df2 = df.set_flags(allows_duplicate_labels=False)
        >>> df2.flags.allows_duplicate_labels
        False
        

157. set_index
        Set the DataFrame index using existing columns.

        Set the DataFrame index (row labels) using one or more existing
        columns or arrays (of the correct length). The index can replace the
        existing index or expand on it.

        Parameters
        ----------
        keys : label or array-like or list of labels/arrays
            This parameter can be either a single column key, a single array of
            the same length as the calling DataFrame, or a list containing an
            arbitrary combination of column keys and arrays. Here, "array"
            encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and
            instances of :class:`~collections.abc.Iterator`.
        drop : bool, default True
            Delete columns to be used as the new index.
        append : bool, default False
            Whether to append columns to existing index.
        inplace : bool, default False
            Whether to modify the DataFrame rather than creating a new one.
        verify_integrity : bool, default False
            Check the new index for duplicates. Otherwise defer the check until
            necessary. Setting to False will improve the performance of this
            method.

        Returns
        -------
        DataFrame or None
            Changed row labels or None if ``inplace=True``.

        See Also
        --------
        DataFrame.reset_index : Opposite of set_index.
        DataFrame.reindex : Change to new indices or expand indices.
        DataFrame.reindex_like : Change to same indices as other DataFrame.

        Examples
        --------
        >>> df = pd.DataFrame({'month': [1, 4, 7, 10],
        ...                    'year': [2012, 2014, 2013, 2014],
        ...                    'sale': [55, 40, 84, 31]})
        >>> df
           month  year  sale
        0      1  2012    55
        1      4  2014    40
        2      7  2013    84
        3     10  2014    31

        Set the index to become the 'month' column:

        >>> df.set_index('month')
               year  sale
        month
        1      2012    55
        4      2014    40
        7      2013    84
        10     2014    31

        Create a MultiIndex using columns 'year' and 'month':

        >>> df.set_index(['year', 'month'])
                    sale
        year  month
        2012  1     55
        2014  4     40
        2013  7     84
        2014  10    31

        Create a MultiIndex using an Index and a column:

        >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year'])
                 month  sale
           year
        1  2012  1      55
        2  2014  4      40
        3  2013  7      84
        4  2014  10     31

        Create a MultiIndex using two Series:

        >>> s = pd.Series([1, 2, 3, 4])
        >>> df.set_index([s, s**2])
              month  year  sale
        1 1       1  2012    55
        2 4       4  2014    40
        3 9       7  2013    84
        4 16     10  2014    31
        

158. shape
Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple.
If iterable is specified the tuple is initialized from iterable's items.

If the argument is a tuple, the return value is the same object.

159. shift
Shift index by desired number of periods with an optional time `freq`.

When `freq` is not passed, shift the index without realigning the data.
If `freq` is passed (in this case, the index must be date or datetime,
or it will raise a `NotImplementedError`), the index will be
increased using the periods and the `freq`. `freq` can be inferred
when specified as "infer" as long as either freq or inferred_freq
attribute is set in the index.

Parameters
----------
periods : int
    Number of periods to shift. Can be positive or negative.
freq : DateOffset, tseries.offsets, timedelta, or str, optional
    Offset to use from the tseries module or time rule (e.g. 'EOM').
    If `freq` is specified then the index values are shifted but the
    data is not realigned. That is, use `freq` if you would like to
    extend the index when shifting and preserve the original data.
    If `freq` is specified as "infer" then it will be inferred from
    the freq or inferred_freq attributes of the index. If neither of
    those attributes exist, a ValueError is thrown.
axis : {0 or 'index', 1 or 'columns', None}, default None
    Shift direction. For `Series` this parameter is unused and defaults to 0.
fill_value : object, optional
    The scalar value to use for newly introduced missing values.
    the default depends on the dtype of `self`.
    For numeric data, ``np.nan`` is used.
    For datetime, timedelta, or period data, etc. :attr:`NaT` is used.
    For extension dtypes, ``self.dtype.na_value`` is used.

    .. versionchanged:: 1.1.0

Returns
-------
DataFrame
    Copy of input object, shifted.

See Also
--------
Index.shift : Shift values of Index.
DatetimeIndex.shift : Shift values of DatetimeIndex.
PeriodIndex.shift : Shift values of PeriodIndex.
tshift : Shift the time index, using the index's frequency if
    available.

Examples
--------
>>> df = pd.DataFrame({"Col1": [10, 20, 15, 30, 45],
...                    "Col2": [13, 23, 18, 33, 48],
...                    "Col3": [17, 27, 22, 37, 52]},
...                   index=pd.date_range("2020-01-01", "2020-01-05"))
>>> df
            Col1  Col2  Col3
2020-01-01    10    13    17
2020-01-02    20    23    27
2020-01-03    15    18    22
2020-01-04    30    33    37
2020-01-05    45    48    52

>>> df.shift(periods=3)
            Col1  Col2  Col3
2020-01-01   NaN   NaN   NaN
2020-01-02   NaN   NaN   NaN
2020-01-03   NaN   NaN   NaN
2020-01-04  10.0  13.0  17.0
2020-01-05  20.0  23.0  27.0

>>> df.shift(periods=1, axis="columns")
            Col1  Col2  Col3
2020-01-01   NaN    10    13
2020-01-02   NaN    20    23
2020-01-03   NaN    15    18
2020-01-04   NaN    30    33
2020-01-05   NaN    45    48

>>> df.shift(periods=3, fill_value=0)
            Col1  Col2  Col3
2020-01-01     0     0     0
2020-01-02     0     0     0
2020-01-03     0     0     0
2020-01-04    10    13    17
2020-01-05    20    23    27

>>> df.shift(periods=3, freq="D")
            Col1  Col2  Col3
2020-01-04    10    13    17
2020-01-05    20    23    27
2020-01-06    15    18    22
2020-01-07    30    33    37
2020-01-08    45    48    52

>>> df.shift(periods=3, freq="infer")
            Col1  Col2  Col3
2020-01-04    10    13    17
2020-01-05    20    23    27
2020-01-06    15    18    22
2020-01-07    30    33    37
2020-01-08    45    48    52


160. size
Signed integer type, compatible with Python `int` and C ``long``.

    :Character code: ``'l'``
    :Canonical name: `numpy.int_`
    :Alias on this platform (Linux x86_64): `numpy.int64`: 64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``).
    :Alias on this platform (Linux x86_64): `numpy.intp`: Signed integer large enough to fit pointer, compatible with C ``intptr_t``.

161. skew
Return unbiased skew over requested axis.

Normalized by N-1.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)


162. slice_shift
        Equivalent to `shift` without copying data.

        .. deprecated:: 1.2.0
            slice_shift is deprecated,
            use DataFrame/Series.shift instead.

        The shifted data will not include the dropped periods and the
        shifted axis will be smaller than the original.

        Parameters
        ----------
        periods : int
            Number of periods to move, can be positive or negative.
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            For `Series` this parameter is unused and defaults to 0.

        Returns
        -------
        shifted : same type as caller

        Notes
        -----
        While the `slice_shift` is faster than `shift`, you may pay for it
        later during alignment.
        

163. sort_index
        Sort object by labels (along an axis).

        Returns a new DataFrame sorted by label if `inplace` argument is
        ``False``, otherwise updates the original DataFrame and returns None.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            The axis along which to sort.  The value 0 identifies the rows,
            and 1 identifies the columns.
        level : int or level name or list of ints or list of level names
            If not None, sort on values in specified index level(s).
        ascending : bool or list-like of bools, default True
            Sort ascending vs. descending. When the index is a MultiIndex the
            sort direction can be controlled for each level individually.
        inplace : bool, default False
            Whether to modify the DataFrame rather than creating a new one.
        kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort'
            Choice of sorting algorithm. See also :func:`numpy.sort` for more
            information. `mergesort` and `stable` are the only stable algorithms. For
            DataFrames, this option is only applied when sorting on a single
            column or label.
        na_position : {'first', 'last'}, default 'last'
            Puts NaNs at the beginning if `first`; `last` puts NaNs at the end.
            Not implemented for MultiIndex.
        sort_remaining : bool, default True
            If True and sorting by level and index is multilevel, sort by other
            levels too (in order) after sorting by specified level.
        ignore_index : bool, default False
            If True, the resulting axis will be labeled 0, 1, …, n - 1.

            .. versionadded:: 1.0.0

        key : callable, optional
            If not None, apply the key function to the index values
            before sorting. This is similar to the `key` argument in the
            builtin :meth:`sorted` function, with the notable difference that
            this `key` function should be *vectorized*. It should expect an
            ``Index`` and return an ``Index`` of the same shape. For MultiIndex
            inputs, the key is applied *per level*.

            .. versionadded:: 1.1.0

        Returns
        -------
        DataFrame or None
            The original DataFrame sorted by the labels or None if ``inplace=True``.

        See Also
        --------
        Series.sort_index : Sort Series by the index.
        DataFrame.sort_values : Sort DataFrame by the value.
        Series.sort_values : Sort Series by the value.

        Examples
        --------
        >>> df = pd.DataFrame([1, 2, 3, 4, 5], index=[100, 29, 234, 1, 150],
        ...                   columns=['A'])
        >>> df.sort_index()
             A
        1    4
        29   2
        100  1
        150  5
        234  3

        By default, it sorts in ascending order, to sort in descending order,
        use ``ascending=False``

        >>> df.sort_index(ascending=False)
             A
        234  3
        150  5
        100  1
        29   2
        1    4

        A key function can be specified which is applied to the index before
        sorting. For a ``MultiIndex`` this is applied to each level separately.

        >>> df = pd.DataFrame({"a": [1, 2, 3, 4]}, index=['A', 'b', 'C', 'd'])
        >>> df.sort_index(key=lambda x: x.str.lower())
           a
        A  1
        b  2
        C  3
        d  4
        

164. sort_values
Sort by the values along either axis.

Parameters
----------
        by : str or list of str
            Name or list of names to sort by.

            - if `axis` is 0 or `'index'` then `by` may contain index
              levels and/or column labels.
            - if `axis` is 1 or `'columns'` then `by` may contain column
              levels and/or index labels.
axis : {0 or 'index', 1 or 'columns'}, default 0
     Axis to be sorted.
ascending : bool or list of bool, default True
     Sort ascending vs. descending. Specify list for multiple sort
     orders.  If this is a list of bools, must match the length of
     the by.
inplace : bool, default False
     If True, perform operation in-place.
kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort'
     Choice of sorting algorithm. See also :func:`numpy.sort` for more
     information. `mergesort` and `stable` are the only stable algorithms. For
     DataFrames, this option is only applied when sorting on a single
     column or label.
na_position : {'first', 'last'}, default 'last'
     Puts NaNs at the beginning if `first`; `last` puts NaNs at the
     end.
ignore_index : bool, default False
     If True, the resulting axis will be labeled 0, 1, …, n - 1.

     .. versionadded:: 1.0.0

key : callable, optional
    Apply the key function to the values
    before sorting. This is similar to the `key` argument in the
    builtin :meth:`sorted` function, with the notable difference that
    this `key` function should be *vectorized*. It should expect a
    ``Series`` and return a Series with the same shape as the input.
    It will be applied to each column in `by` independently.

    .. versionadded:: 1.1.0

Returns
-------
DataFrame or None
    DataFrame with sorted values or None if ``inplace=True``.

See Also
--------
DataFrame.sort_index : Sort a DataFrame by the index.
Series.sort_values : Similar method for a Series.

Examples
--------
>>> df = pd.DataFrame({
...     'col1': ['A', 'A', 'B', np.nan, 'D', 'C'],
...     'col2': [2, 1, 9, 8, 7, 4],
...     'col3': [0, 1, 9, 4, 2, 3],
...     'col4': ['a', 'B', 'c', 'D', 'e', 'F']
... })
>>> df
  col1  col2  col3 col4
0    A     2     0    a
1    A     1     1    B
2    B     9     9    c
3  NaN     8     4    D
4    D     7     2    e
5    C     4     3    F

Sort by col1

>>> df.sort_values(by=['col1'])
  col1  col2  col3 col4
0    A     2     0    a
1    A     1     1    B
2    B     9     9    c
5    C     4     3    F
4    D     7     2    e
3  NaN     8     4    D

Sort by multiple columns

>>> df.sort_values(by=['col1', 'col2'])
  col1  col2  col3 col4
1    A     1     1    B
0    A     2     0    a
2    B     9     9    c
5    C     4     3    F
4    D     7     2    e
3  NaN     8     4    D

Sort Descending

>>> df.sort_values(by='col1', ascending=False)
  col1  col2  col3 col4
4    D     7     2    e
5    C     4     3    F
2    B     9     9    c
0    A     2     0    a
1    A     1     1    B
3  NaN     8     4    D

Putting NAs first

>>> df.sort_values(by='col1', ascending=False, na_position='first')
  col1  col2  col3 col4
3  NaN     8     4    D
4    D     7     2    e
5    C     4     3    F
2    B     9     9    c
0    A     2     0    a
1    A     1     1    B

Sorting with a key function

>>> df.sort_values(by='col4', key=lambda col: col.str.lower())
   col1  col2  col3 col4
0    A     2     0    a
1    A     1     1    B
2    B     9     9    c
3  NaN     8     4    D
4    D     7     2    e
5    C     4     3    F

Natural sort with the key argument,
using the `natsort <https://github.com/SethMMorton/natsort>` package.

>>> df = pd.DataFrame({
...    "time": ['0hr', '128hr', '72hr', '48hr', '96hr'],
...    "value": [10, 20, 30, 40, 50]
... })
>>> df
    time  value
0    0hr     10
1  128hr     20
2   72hr     30
3   48hr     40
4   96hr     50
>>> from natsort import index_natsorted
>>> df.sort_values(
...    by="time",
...    key=lambda x: np.argsort(index_natsorted(df["time"]))
... )
    time  value
0    0hr     10
3   48hr     40
2   72hr     30
4   96hr     50
1  128hr     20


165. sparse
    DataFrame accessor for sparse data.

    .. versionadded:: 0.25.0
    

166. squeeze
        Squeeze 1 dimensional axis objects into scalars.

        Series or DataFrames with a single element are squeezed to a scalar.
        DataFrames with a single column or a single row are squeezed to a
        Series. Otherwise the object is unchanged.

        This method is most useful when you don't know if your
        object is a Series or DataFrame, but you do know it has just a single
        column. In that case you can safely call `squeeze` to ensure you have a
        Series.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns', None}, default None
            A specific axis to squeeze. By default, all length-1 axes are
            squeezed. For `Series` this parameter is unused and defaults to `None`.

        Returns
        -------
        DataFrame, Series, or scalar
            The projection after squeezing `axis` or all the axes.

        See Also
        --------
        Series.iloc : Integer-location based indexing for selecting scalars.
        DataFrame.iloc : Integer-location based indexing for selecting Series.
        Series.to_frame : Inverse of DataFrame.squeeze for a
            single-column DataFrame.

        Examples
        --------
        >>> primes = pd.Series([2, 3, 5, 7])

        Slicing might produce a Series with a single value:

        >>> even_primes = primes[primes % 2 == 0]
        >>> even_primes
        0    2
        dtype: int64

        >>> even_primes.squeeze()
        2

        Squeezing objects with more than one value in every axis does nothing:

        >>> odd_primes = primes[primes % 2 == 1]
        >>> odd_primes
        1    3
        2    5
        3    7
        dtype: int64

        >>> odd_primes.squeeze()
        1    3
        2    5
        3    7
        dtype: int64

        Squeezing is even more effective when used with DataFrames.

        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])
        >>> df
           a  b
        0  1  2
        1  3  4

        Slicing a single column will produce a DataFrame with the columns
        having only one value:

        >>> df_a = df[['a']]
        >>> df_a
           a
        0  1
        1  3

        So the columns can be squeezed down, resulting in a Series:

        >>> df_a.squeeze('columns')
        0    1
        1    3
        Name: a, dtype: int64

        Slicing a single row from a single column will produce a single
        scalar DataFrame:

        >>> df_0a = df.loc[df.index < 1, ['a']]
        >>> df_0a
           a
        0  1

        Squeezing the rows produces a single scalar Series:

        >>> df_0a.squeeze('rows')
        a    1
        Name: 0, dtype: int64

        Squeezing all axes will project directly into a scalar:

        >>> df_0a.squeeze()
        1
        

167. stack
        Stack the prescribed level(s) from columns to index.

        Return a reshaped DataFrame or Series having a multi-level
        index with one or more new inner-most levels compared to the current
        DataFrame. The new inner-most levels are created by pivoting the
        columns of the current dataframe:

          - if the columns have a single level, the output is a Series;
          - if the columns have multiple levels, the new index
            level(s) is (are) taken from the prescribed level(s) and
            the output is a DataFrame.

        Parameters
        ----------
        level : int, str, list, default -1
            Level(s) to stack from the column axis onto the index
            axis, defined as one index or label, or a list of indices
            or labels.
        dropna : bool, default True
            Whether to drop rows in the resulting Frame/Series with
            missing values. Stacking a column level onto the index
            axis can create combinations of index and column values
            that are missing from the original dataframe. See Examples
            section.

        Returns
        -------
        DataFrame or Series
            Stacked dataframe or series.

        See Also
        --------
        DataFrame.unstack : Unstack prescribed level(s) from index axis
             onto column axis.
        DataFrame.pivot : Reshape dataframe from long format to wide
             format.
        DataFrame.pivot_table : Create a spreadsheet-style pivot table
             as a DataFrame.

        Notes
        -----
        The function is named by analogy with a collection of books
        being reorganized from being side by side on a horizontal
        position (the columns of the dataframe) to being stacked
        vertically on top of each other (in the index of the
        dataframe).

        Reference :ref:`the user guide <reshaping.stacking>` for more examples.

        Examples
        --------
        **Single level columns**

        >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]],
        ...                                     index=['cat', 'dog'],
        ...                                     columns=['weight', 'height'])

        Stacking a dataframe with a single level column axis returns a Series:

        >>> df_single_level_cols
             weight height
        cat       0      1
        dog       2      3
        >>> df_single_level_cols.stack()
        cat  weight    0
             height    1
        dog  weight    2
             height    3
        dtype: int64

        **Multi level columns: simple case**

        >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'),
        ...                                        ('weight', 'pounds')])
        >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]],
        ...                                     index=['cat', 'dog'],
        ...                                     columns=multicol1)

        Stacking a dataframe with a multi-level column axis:

        >>> df_multi_level_cols1
             weight
                 kg    pounds
        cat       1        2
        dog       2        4
        >>> df_multi_level_cols1.stack()
                    weight
        cat kg           1
            pounds       2
        dog kg           2
            pounds       4

        **Missing values**

        >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'),
        ...                                        ('height', 'm')])
        >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]],
        ...                                     index=['cat', 'dog'],
        ...                                     columns=multicol2)

        It is common to have missing values when stacking a dataframe
        with multi-level columns, as the stacked dataframe typically
        has more values than the original dataframe. Missing values
        are filled with NaNs:

        >>> df_multi_level_cols2
            weight height
                kg      m
        cat    1.0    2.0
        dog    3.0    4.0
        >>> df_multi_level_cols2.stack()
                height  weight
        cat kg     NaN     1.0
            m      2.0     NaN
        dog kg     NaN     3.0
            m      4.0     NaN

        **Prescribing the level(s) to be stacked**

        The first parameter controls which level or levels are stacked:

        >>> df_multi_level_cols2.stack(0)
                     kg    m
        cat height  NaN  2.0
            weight  1.0  NaN
        dog height  NaN  4.0
            weight  3.0  NaN
        >>> df_multi_level_cols2.stack([0, 1])
        cat  height  m     2.0
             weight  kg    1.0
        dog  height  m     4.0
             weight  kg    3.0
        dtype: float64

        **Dropping missing values**

        >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]],
        ...                                     index=['cat', 'dog'],
        ...                                     columns=multicol2)

        Note that rows where all values are missing are dropped by
        default but this behaviour can be controlled via the dropna
        keyword parameter:

        >>> df_multi_level_cols3
            weight height
                kg      m
        cat    NaN    1.0
        dog    2.0    3.0
        >>> df_multi_level_cols3.stack(dropna=False)
                height  weight
        cat kg     NaN     NaN
            m      1.0     NaN
        dog kg     NaN     2.0
            m      3.0     NaN
        >>> df_multi_level_cols3.stack(dropna=True)
                height  weight
        cat m      1.0     NaN
        dog kg     NaN     2.0
            m      3.0     NaN
        

168. std
Return sample standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters
----------
axis : {index (0), columns (1)}
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values. If an entire row/column is NA, the result
    will be NA.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
ddof : int, default 1
    Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
    where N represents the number of elements.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

Returns
-------
Series or DataFrame (if level specified) 

Notes
-----
To have the same behaviour as `numpy.std`, use `ddof=0` (instead of the
default `ddof=1`)

Examples
--------
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3],
...                   'age': [21, 25, 62, 43],
...                   'height': [1.61, 1.87, 1.49, 2.01]}
...                  ).set_index('person_id')
>>> df
           age  height
person_id
0           21    1.61
1           25    1.87
2           62    1.49
3           43    2.01

The standard deviation of the columns can be found as follows:

>>> df.std()
age       18.786076
height     0.237417

Alternatively, `ddof=0` can be set to normalize by N instead of N-1:

>>> df.std(ddof=0)
age       16.269219
height     0.205609


169. style
    Helps style a DataFrame or Series according to the data with HTML and CSS.

    Parameters
    ----------
    data : Series or DataFrame
        Data to be styled - either a Series or DataFrame.
    precision : int, optional
        Precision to round floats to. If not given defaults to
        ``pandas.options.styler.format.precision``.

        .. versionchanged:: 1.4.0
    table_styles : list-like, default None
        List of {selector: (attr, value)} dicts; see Notes.
    uuid : str, default None
        A unique identifier to avoid CSS collisions; generated automatically.
    caption : str, tuple, default None
        String caption to attach to the table. Tuple only used for LaTeX dual captions.
    table_attributes : str, default None
        Items that show up in the opening ``<table>`` tag
        in addition to automatic (by default) id.
    cell_ids : bool, default True
        If True, each cell will have an ``id`` attribute in their HTML tag.
        The ``id`` takes the form ``T_<uuid>_row<num_row>_col<num_col>``
        where ``<uuid>`` is the unique identifier, ``<num_row>`` is the row
        number and ``<num_col>`` is the column number.
    na_rep : str, optional
        Representation for missing values.
        If ``na_rep`` is None, no special formatting is applied, and falls back to
        ``pandas.options.styler.format.na_rep``.

        .. versionadded:: 1.0.0

    uuid_len : int, default 5
        If ``uuid`` is not specified, the length of the ``uuid`` to randomly generate
        expressed in hex characters, in range [0, 32].

        .. versionadded:: 1.2.0

    decimal : str, optional
        Character used as decimal separator for floats, complex and integers. If not
        given uses ``pandas.options.styler.format.decimal``.

        .. versionadded:: 1.3.0

    thousands : str, optional, default None
        Character used as thousands separator for floats, complex and integers. If not
        given uses ``pandas.options.styler.format.thousands``.

        .. versionadded:: 1.3.0

    escape : str, optional
        Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"``
        in cell display string with HTML-safe sequences.
        Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``,
        ``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with
        LaTeX-safe sequences. If not given uses ``pandas.options.styler.format.escape``.

        .. versionadded:: 1.3.0
    formatter : str, callable, dict, optional
        Object to define how values are displayed. See ``Styler.format``. If not given
        uses ``pandas.options.styler.format.formatter``.

        .. versionadded:: 1.4.0

    Attributes
    ----------
    env : Jinja2 jinja2.Environment
    template_html : Jinja2 Template
    template_html_table : Jinja2 Template
    template_html_style : Jinja2 Template
    template_latex : Jinja2 Template
    loader : Jinja2 Loader

    See Also
    --------
    DataFrame.style : Return a Styler object containing methods for building
        a styled HTML representation for the DataFrame.

    Notes
    -----
    Most styling will be done by passing style functions into
    ``Styler.apply`` or ``Styler.applymap``. Style functions should
    return values with strings containing CSS ``'attr: value'`` that will
    be applied to the indicated cells.

    If using in the Jupyter notebook, Styler has defined a ``_repr_html_``
    to automatically render itself. Otherwise call Styler.to_html to get
    the generated HTML.

    CSS classes are attached to the generated HTML

    * Index and Column names include ``index_name`` and ``level<k>``
      where `k` is its level in a MultiIndex
    * Index label cells include

      * ``row_heading``
      * ``row<n>`` where `n` is the numeric position of the row
      * ``level<k>`` where `k` is the level in a MultiIndex

    * Column label cells include
      * ``col_heading``
      * ``col<n>`` where `n` is the numeric position of the column
      * ``level<k>`` where `k` is the level in a MultiIndex

    * Blank cells include ``blank``
    * Data cells include ``data``
    * Trimmed cells include ``col_trim`` or ``row_trim``.

    Any, or all, or these classes can be renamed by using the ``css_class_names``
    argument in ``Styler.set_table_classes``, giving a value such as
    *{"row": "MY_ROW_CLASS", "col_trim": "", "row_trim": ""}*.
    

170. sub
Get Subtraction of dataframe and other, element-wise (binary operator `sub`).

Equivalent to ``dataframe - other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rsub`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


171. subtract
Get Subtraction of dataframe and other, element-wise (binary operator `sub`).

Equivalent to ``dataframe - other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rsub`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


172. sum
Return the sum of the values over the requested axis.

This is equivalent to the method ``numpy.sum``.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values when computing the result.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

min_count : int, default 0
    The required number of valid values to perform the operation. If fewer than
    ``min_count`` non-NA values are present the result will be NA.
**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or DataFrame (if level specified)

See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.

Examples
--------
>>> idx = pd.MultiIndex.from_arrays([
...     ['warm', 'warm', 'cold', 'cold'],
...     ['dog', 'falcon', 'fish', 'spider']],
...     names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded  animal
warm     dog       4
         falcon    2
cold     fish      0
         spider    8
Name: legs, dtype: int64

>>> s.sum()
14

By default, the sum of an empty or all-NA Series is ``0``.

>>> pd.Series([], dtype="float64").sum()  # min_count=0 is the default
0.0

This can be controlled with the ``min_count`` parameter. For example, if
you'd like the sum of an empty series to be NaN, pass ``min_count=1``.

>>> pd.Series([], dtype="float64").sum(min_count=1)
nan

Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
empty series identically.

>>> pd.Series([np.nan]).sum()
0.0

>>> pd.Series([np.nan]).sum(min_count=1)
nan


173. swapaxes
        Interchange axes and swap values axes appropriately.

        Returns
        -------
        y : same as input
        

174. swaplevel
Swap levels i and j in a :class:`MultiIndex`.

Default is to swap the two innermost levels of the index.

Parameters
----------
i, j : int or str
    Levels of the indices to be swapped. Can pass level name as string.
axis : {0 or 'index', 1 or 'columns'}, default 0
            The axis to swap levels on. 0 or 'index' for row-wise, 1 or
            'columns' for column-wise.

Returns
-------
DataFrame
    DataFrame with levels swapped in MultiIndex.

Examples
--------
>>> df = pd.DataFrame(
...     {"Grade": ["A", "B", "A", "C"]},
...     index=[
...         ["Final exam", "Final exam", "Coursework", "Coursework"],
...         ["History", "Geography", "History", "Geography"],
...         ["January", "February", "March", "April"],
...     ],
... )
>>> df
                                    Grade
Final exam  History     January      A
            Geography   February     B
Coursework  History     March        A
            Geography   April        C

In the following example, we will swap the levels of the indices.
Here, we will swap the levels column-wise, but levels can be swapped row-wise
in a similar manner. Note that column-wise is the default behaviour.
By not supplying any arguments for i and j, we swap the last and second to
last indices.

>>> df.swaplevel()
                                    Grade
Final exam  January     History         A
            February    Geography       B
Coursework  March       History         A
            April       Geography       C

By supplying one argument, we can choose which index to swap the last
index with. We can for example swap the first index with the last one as
follows.

>>> df.swaplevel(0)
                                    Grade
January     History     Final exam      A
February    Geography   Final exam      B
March       History     Coursework      A
April       Geography   Coursework      C

We can also define explicitly which indices we want to swap by supplying values
for both i and j. Here, we for example swap the first and second indices.

>>> df.swaplevel(0, 1)
                                    Grade
History     Final exam  January         A
Geography   Final exam  February        B
History     Coursework  March           A
Geography   Coursework  April           C


175. tail
        Return the last `n` rows.

        This function returns last `n` rows from the object based on
        position. It is useful for quickly verifying data, for example,
        after sorting or appending rows.

        For negative values of `n`, this function returns all rows except
        the first `|n|` rows, equivalent to ``df[|n|:]``.

        If n is larger than the number of rows, this function returns all rows.

        Parameters
        ----------
        n : int, default 5
            Number of rows to select.

        Returns
        -------
        type of caller
            The last `n` rows of the caller object.

        See Also
        --------
        DataFrame.head : The first `n` rows of the caller object.

        Examples
        --------
        >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion',
        ...                    'monkey', 'parrot', 'shark', 'whale', 'zebra']})
        >>> df
              animal
        0  alligator
        1        bee
        2     falcon
        3       lion
        4     monkey
        5     parrot
        6      shark
        7      whale
        8      zebra

        Viewing the last 5 lines

        >>> df.tail()
           animal
        4  monkey
        5  parrot
        6   shark
        7   whale
        8   zebra

        Viewing the last `n` lines (three in this case)

        >>> df.tail(3)
          animal
        6  shark
        7  whale
        8  zebra

        For negative values of `n`

        >>> df.tail(-3)
           animal
        3    lion
        4  monkey
        5  parrot
        6   shark
        7   whale
        8   zebra
        

176. take
        Return the elements in the given *positional* indices along an axis.

        This means that we are not indexing according to actual values in
        the index attribute of the object. We are indexing according to the
        actual position of the element in the object.

        Parameters
        ----------
        indices : array-like
            An array of ints indicating which positions to take.
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            The axis on which to select elements. ``0`` means that we are
            selecting rows, ``1`` means that we are selecting columns.
            For `Series` this parameter is unused and defaults to 0.
        is_copy : bool
            Before pandas 1.0, ``is_copy=False`` can be specified to ensure
            that the return value is an actual copy. Starting with pandas 1.0,
            ``take`` always returns a copy, and the keyword is therefore
            deprecated.

            .. deprecated:: 1.0.0
        **kwargs
            For compatibility with :meth:`numpy.take`. Has no effect on the
            output.

        Returns
        -------
        taken : same type as caller
            An array-like containing the elements taken from the object.

        See Also
        --------
        DataFrame.loc : Select a subset of a DataFrame by labels.
        DataFrame.iloc : Select a subset of a DataFrame by positions.
        numpy.take : Take elements from an array along an axis.

        Examples
        --------
        >>> df = pd.DataFrame([('falcon', 'bird', 389.0),
        ...                    ('parrot', 'bird', 24.0),
        ...                    ('lion', 'mammal', 80.5),
        ...                    ('monkey', 'mammal', np.nan)],
        ...                   columns=['name', 'class', 'max_speed'],
        ...                   index=[0, 2, 3, 1])
        >>> df
             name   class  max_speed
        0  falcon    bird      389.0
        2  parrot    bird       24.0
        3    lion  mammal       80.5
        1  monkey  mammal        NaN

        Take elements at positions 0 and 3 along the axis 0 (default).

        Note how the actual indices selected (0 and 1) do not correspond to
        our selected indices 0 and 3. That's because we are selecting the 0th
        and 3rd rows, not rows whose indices equal 0 and 3.

        >>> df.take([0, 3])
             name   class  max_speed
        0  falcon    bird      389.0
        1  monkey  mammal        NaN

        Take elements at indices 1 and 2 along the axis 1 (column selection).

        >>> df.take([1, 2], axis=1)
            class  max_speed
        0    bird      389.0
        2    bird       24.0
        3  mammal       80.5
        1  mammal        NaN

        We may take elements using negative integers for positive indices,
        starting from the end of the object, just like with Python lists.

        >>> df.take([-1, -2])
             name   class  max_speed
        1  monkey  mammal        NaN
        3    lion  mammal       80.5
        

177. to_clipboard
        Copy object to the system clipboard.

        Write a text representation of object to the system clipboard.
        This can be pasted into Excel, for example.

        Parameters
        ----------
        excel : bool, default True
            Produce output in a csv format for easy pasting into excel.

            - True, use the provided separator for csv pasting.
            - False, write a string representation of the object to the clipboard.

        sep : str, default ``'\t'``
            Field delimiter.
        **kwargs
            These parameters will be passed to DataFrame.to_csv.

        See Also
        --------
        DataFrame.to_csv : Write a DataFrame to a comma-separated values
            (csv) file.
        read_clipboard : Read text from clipboard and pass to read_csv.

        Notes
        -----
        Requirements for your platform.

          - Linux : `xclip`, or `xsel` (with `PyQt4` modules)
          - Windows : none
          - macOS : none

        This method uses the processes developed for the package `pyperclip`. A
        solution to render any output string format is given in the examples.

        Examples
        --------
        Copy the contents of a DataFrame to the clipboard.

        >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])

        >>> df.to_clipboard(sep=',')  # doctest: +SKIP
        ... # Wrote the following to the system clipboard:
        ... # ,A,B,C
        ... # 0,1,2,3
        ... # 1,4,5,6

        We can omit the index by passing the keyword `index` and setting
        it to false.

        >>> df.to_clipboard(sep=',', index=False)  # doctest: +SKIP
        ... # Wrote the following to the system clipboard:
        ... # A,B,C
        ... # 1,2,3
        ... # 4,5,6

        Using the original `pyperclip` package for any string output format.

        .. code-block:: python

           import pyperclip
           html = df.style.to_html()
           pyperclip.copy(html)
        

178. to_csv
Write object to a comma-separated values (csv) file.

Parameters
----------
path_or_buf : str, path object, file-like object, or None, default None
    String, path object (implementing os.PathLike[str]), or file-like
    object implementing a write() function. If None, the result is
    returned as a string. If a non-binary file object is passed, it should
    be opened with `newline=''`, disabling universal newlines. If a binary
    file object is passed, `mode` might need to contain a `'b'`.

    .. versionchanged:: 1.2.0

       Support for binary file objects was introduced.

sep : str, default ','
    String of length 1. Field delimiter for the output file.
na_rep : str, default ''
    Missing data representation.
float_format : str, Callable, default None
    Format string for floating point numbers. If a Callable is given, it takes
    precedence over other numeric formatting parameters, like decimal.
columns : sequence, optional
    Columns to write.
header : bool or list of str, default True
    Write out the column names. If a list of strings is given it is
    assumed to be aliases for the column names.
index : bool, default True
    Write row names (index).
index_label : str or sequence, or False, default None
    Column label for index column(s) if desired. If None is given, and
    `header` and `index` are True, then the index names are used. A
    sequence should be given if the object uses MultiIndex. If
    False do not print fields for index names. Use index_label=False
    for easier importing in R.
mode : str, default 'w'
    Python write mode. The available write modes are the same as
    :py:func:`open`.
encoding : str, optional
    A string representing the encoding to use in the output file,
    defaults to 'utf-8'. `encoding` is not supported if `path_or_buf`
    is a non-binary file object.
compression : str or dict, default 'infer'
    For on-the-fly compression of the output data. If 'infer' and 'path_or_buf' is
    path-like, then detect compression from the following extensions: '.gz',
    '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
    (otherwise no compression).
    Set to ``None`` for no compression.
    Can also be a dict with key ``'method'`` set
    to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
    key-value pairs are forwarded to
    ``zipfile.ZipFile``, ``gzip.GzipFile``,
    ``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
    ``tarfile.TarFile``, respectively.
    As an example, the following could be passed for faster compression and to create
    a reproducible gzip archive:
    ``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.

        .. versionadded:: 1.5.0
            Added support for `.tar` files.

    .. versionchanged:: 1.0.0

       May now be a dict with key 'method' as compression mode
       and other entries as additional compression options if
       compression mode is 'zip'.

    .. versionchanged:: 1.1.0

       Passing compression options as keys in dict is
       supported for compression modes 'gzip', 'bz2', 'zstd', and 'zip'.

    .. versionchanged:: 1.2.0

        Compression is supported for binary file objects.

    .. versionchanged:: 1.2.0

        Previous versions forwarded dict entries for 'gzip' to
        `gzip.open` instead of `gzip.GzipFile` which prevented
        setting `mtime`.

quoting : optional constant from csv module
    Defaults to csv.QUOTE_MINIMAL. If you have set a `float_format`
    then floats are converted to strings and thus csv.QUOTE_NONNUMERIC
    will treat them as non-numeric.
quotechar : str, default '\"'
    String of length 1. Character used to quote fields.
lineterminator : str, optional
    The newline character or character sequence to use in the output
    file. Defaults to `os.linesep`, which depends on the OS in which
    this method is called ('\\n' for linux, '\\r\\n' for Windows, i.e.).

    .. versionchanged:: 1.5.0

        Previously was line_terminator, changed for consistency with
        read_csv and the standard library 'csv' module.

chunksize : int or None
    Rows to write at a time.
date_format : str, default None
    Format string for datetime objects.
doublequote : bool, default True
    Control quoting of `quotechar` inside a field.
escapechar : str, default None
    String of length 1. Character used to escape `sep` and `quotechar`
    when appropriate.
decimal : str, default '.'
    Character recognized as decimal separator. E.g. use ',' for
    European data.
errors : str, default 'strict'
    Specifies how encoding and decoding errors are to be handled.
    See the errors argument for :func:`open` for a full list
    of options.

    .. versionadded:: 1.1.0

storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
    are forwarded to ``urllib.request.Request`` as header options. For other
    URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
    forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
    details, and for more examples on storage options refer `here
    <https://pandas.pydata.org/docs/user_guide/io.html?
    highlight=storage_options#reading-writing-remote-files>`_.

    .. versionadded:: 1.2.0

Returns
-------
None or str
    If path_or_buf is None, returns the resulting csv format as a
    string. Otherwise returns None.

See Also
--------
read_csv : Load a CSV file into a DataFrame.
to_excel : Write DataFrame to an Excel file.

Examples
--------
>>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'],
...                    'mask': ['red', 'purple'],
...                    'weapon': ['sai', 'bo staff']})
>>> df.to_csv(index=False)
'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n'

Create 'out.zip' containing 'out.csv'

>>> compression_opts = dict(method='zip',
...                         archive_name='out.csv')  # doctest: +SKIP
>>> df.to_csv('out.zip', index=False,
...           compression=compression_opts)  # doctest: +SKIP

To write a csv file to a new folder or nested folder you will first
need to create it using either Pathlib or os:

>>> from pathlib import Path  # doctest: +SKIP
>>> filepath = Path('folder/subfolder/out.csv')  # doctest: +SKIP
>>> filepath.parent.mkdir(parents=True, exist_ok=True)  # doctest: +SKIP
>>> df.to_csv(filepath)  # doctest: +SKIP

>>> import os  # doctest: +SKIP
>>> os.makedirs('folder/subfolder', exist_ok=True)  # doctest: +SKIP
>>> df.to_csv('folder/subfolder/out.csv')  # doctest: +SKIP


179. to_dict
        Convert the DataFrame to a dictionary.

        The type of the key-value pairs can be customized with the parameters
        (see below).

        Parameters
        ----------
        orient : str {'dict', 'list', 'series', 'split', 'tight', 'records', 'index'}
            Determines the type of the values of the dictionary.

            - 'dict' (default) : dict like {column -> {index -> value}}
            - 'list' : dict like {column -> [values]}
            - 'series' : dict like {column -> Series(values)}
            - 'split' : dict like
              {'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
            - 'tight' : dict like
              {'index' -> [index], 'columns' -> [columns], 'data' -> [values],
              'index_names' -> [index.names], 'column_names' -> [column.names]}
            - 'records' : list like
              [{column -> value}, ... , {column -> value}]
            - 'index' : dict like {index -> {column -> value}}

            Abbreviations are allowed. `s` indicates `series` and `sp`
            indicates `split`.

            .. versionadded:: 1.4.0
                'tight' as an allowed value for the ``orient`` argument

        into : class, default dict
            The collections.abc.Mapping subclass used for all Mappings
            in the return value.  Can be the actual class or an empty
            instance of the mapping type you want.  If you want a
            collections.defaultdict, you must pass it initialized.

        Returns
        -------
        dict, list or collections.abc.Mapping
            Return a collections.abc.Mapping object representing the DataFrame.
            The resulting transformation depends on the `orient` parameter.

        See Also
        --------
        DataFrame.from_dict: Create a DataFrame from a dictionary.
        DataFrame.to_json: Convert a DataFrame to JSON format.

        Examples
        --------
        >>> df = pd.DataFrame({'col1': [1, 2],
        ...                    'col2': [0.5, 0.75]},
        ...                   index=['row1', 'row2'])
        >>> df
              col1  col2
        row1     1  0.50
        row2     2  0.75
        >>> df.to_dict()
        {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}

        You can specify the return orientation.

        >>> df.to_dict('series')
        {'col1': row1    1
                 row2    2
        Name: col1, dtype: int64,
        'col2': row1    0.50
                row2    0.75
        Name: col2, dtype: float64}

        >>> df.to_dict('split')
        {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'],
         'data': [[1, 0.5], [2, 0.75]]}

        >>> df.to_dict('records')
        [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]

        >>> df.to_dict('index')
        {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}

        >>> df.to_dict('tight')
        {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'],
         'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]}

        You can also specify the mapping type.

        >>> from collections import OrderedDict, defaultdict
        >>> df.to_dict(into=OrderedDict)
        OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])),
                     ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])

        If you want a `defaultdict`, you need to initialize it:

        >>> dd = defaultdict(list)
        >>> df.to_dict('records', into=dd)
        [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}),
         defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
        

180. to_excel
Write object to an Excel sheet.

To write a single object to an Excel .xlsx file it is only necessary to
specify a target file name. To write to multiple sheets it is necessary to
create an `ExcelWriter` object with a target file name, and specify a sheet
in the file to write to.

Multiple sheets may be written to by specifying unique `sheet_name`.
With all data written to the file it is necessary to save the changes.
Note that creating an `ExcelWriter` object with a file name that already
exists will result in the contents of the existing file being erased.

Parameters
----------
excel_writer : path-like, file-like, or ExcelWriter object
    File path or existing ExcelWriter.
sheet_name : str, default 'Sheet1'
    Name of sheet which will contain DataFrame.
na_rep : str, default ''
    Missing data representation.
float_format : str, optional
    Format string for floating point numbers. For example
    ``float_format="%.2f"`` will format 0.1234 to 0.12.
columns : sequence or list of str, optional
    Columns to write.
header : bool or list of str, default True
    Write out the column names. If a list of string is given it is
    assumed to be aliases for the column names.
index : bool, default True
    Write row names (index).
index_label : str or sequence, optional
    Column label for index column(s) if desired. If not specified, and
    `header` and `index` are True, then the index names are used. A
    sequence should be given if the DataFrame uses MultiIndex.
startrow : int, default 0
    Upper left cell row to dump data frame.
startcol : int, default 0
    Upper left cell column to dump data frame.
engine : str, optional
    Write engine to use, 'openpyxl' or 'xlsxwriter'. You can also set this
    via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and
    ``io.excel.xlsm.writer``.

    .. deprecated:: 1.2.0

        As the `xlwt <https://pypi.org/project/xlwt/>`__ package is no longer
        maintained, the ``xlwt`` engine will be removed in a future version
        of pandas.

merge_cells : bool, default True
    Write MultiIndex and Hierarchical Rows as merged cells.
encoding : str, optional
    Encoding of the resulting excel file. Only necessary for xlwt,
    other writers support unicode natively.

    .. deprecated:: 1.5.0

        This keyword was not used.

inf_rep : str, default 'inf'
    Representation for infinity (there is no native representation for
    infinity in Excel).
verbose : bool, default True
    Display more information in the error logs.

    .. deprecated:: 1.5.0

        This keyword was not used.

freeze_panes : tuple of int (length 2), optional
    Specifies the one-based bottommost row and rightmost column that
    is to be frozen.
storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
    are forwarded to ``urllib.request.Request`` as header options. For other
    URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
    forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
    details, and for more examples on storage options refer `here
    <https://pandas.pydata.org/docs/user_guide/io.html?
    highlight=storage_options#reading-writing-remote-files>`_.

    .. versionadded:: 1.2.0

See Also
--------
to_csv : Write DataFrame to a comma-separated values (csv) file.
ExcelWriter : Class for writing DataFrame objects into excel sheets.
read_excel : Read an Excel file into a pandas DataFrame.
read_csv : Read a comma-separated values (csv) file into DataFrame.
io.formats.style.Styler.to_excel : Add styles to Excel sheet.

Notes
-----
For compatibility with :meth:`~DataFrame.to_csv`,
to_excel serializes lists and dicts to strings before writing.

Once a workbook has been saved it is not possible to write further
data without rewriting the whole workbook.

Examples
--------

Create, write to and save a workbook:

>>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']],
...                    index=['row 1', 'row 2'],
...                    columns=['col 1', 'col 2'])
>>> df1.to_excel("output.xlsx")  # doctest: +SKIP

To specify the sheet name:

>>> df1.to_excel("output.xlsx",
...              sheet_name='Sheet_name_1')  # doctest: +SKIP

If you wish to write to more than one sheet in the workbook, it is
necessary to specify an ExcelWriter object:

>>> df2 = df1.copy()
>>> with pd.ExcelWriter('output.xlsx') as writer:  # doctest: +SKIP
...     df1.to_excel(writer, sheet_name='Sheet_name_1')
...     df2.to_excel(writer, sheet_name='Sheet_name_2')

ExcelWriter can also be used to append to an existing Excel file:

>>> with pd.ExcelWriter('output.xlsx',
...                     mode='a') as writer:  # doctest: +SKIP
...     df.to_excel(writer, sheet_name='Sheet_name_3')

To set the library that is used to write the Excel file,
you can pass the `engine` keyword (the default engine is
automatically chosen depending on the file extension):

>>> df1.to_excel('output1.xlsx', engine='xlsxwriter')  # doctest: +SKIP


181. to_feather
        Write a DataFrame to the binary Feather format.

        Parameters
        ----------
        path : str, path object, file-like object
            String, path object (implementing ``os.PathLike[str]``), or file-like
            object implementing a binary ``write()`` function. If a string or a path,
            it will be used as Root Directory path when writing a partitioned dataset.
        **kwargs :
            Additional keywords passed to :func:`pyarrow.feather.write_feather`.
            Starting with pyarrow 0.17, this includes the `compression`,
            `compression_level`, `chunksize` and `version` keywords.

            .. versionadded:: 1.1.0

        Notes
        -----
        This function writes the dataframe as a `feather file
        <https://arrow.apache.org/docs/python/feather.html>`_. Requires a default
        index. For saving the DataFrame with your custom index use a method that
        supports custom indices e.g. `to_parquet`.
        

182. to_gbq
        Write a DataFrame to a Google BigQuery table.

        This function requires the `pandas-gbq package
        <https://pandas-gbq.readthedocs.io>`__.

        See the `How to authenticate with Google BigQuery
        <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__
        guide for authentication instructions.

        Parameters
        ----------
        destination_table : str
            Name of table to be written, in the form ``dataset.tablename``.
        project_id : str, optional
            Google BigQuery Account project ID. Optional when available from
            the environment.
        chunksize : int, optional
            Number of rows to be inserted in each chunk from the dataframe.
            Set to ``None`` to load the whole dataframe at once.
        reauth : bool, default False
            Force Google BigQuery to re-authenticate the user. This is useful
            if multiple accounts are used.
        if_exists : str, default 'fail'
            Behavior when the destination table exists. Value can be one of:

            ``'fail'``
                If table exists raise pandas_gbq.gbq.TableCreationError.
            ``'replace'``
                If table exists, drop it, recreate it, and insert data.
            ``'append'``
                If table exists, insert data. Create if does not exist.
        auth_local_webserver : bool, default True
            Use the `local webserver flow`_ instead of the `console flow`_
            when getting user credentials.

            .. _local webserver flow:
                https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
            .. _console flow:
                https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console

            *New in version 0.2.0 of pandas-gbq*.

            .. versionchanged:: 1.5.0
               Default value is changed to ``True``. Google has deprecated the
               ``auth_local_webserver = False`` `"out of band" (copy-paste)
               flow
               <https://developers.googleblog.com/2022/02/making-oauth-flows-safer.html?m=1#disallowed-oob>`_.
        table_schema : list of dicts, optional
            List of BigQuery table fields to which according DataFrame
            columns conform to, e.g. ``[{'name': 'col1', 'type':
            'STRING'},...]``. If schema is not provided, it will be
            generated according to dtypes of DataFrame columns. See
            BigQuery API documentation on available names of a field.

            *New in version 0.3.1 of pandas-gbq*.
        location : str, optional
            Location where the load job should run. See the `BigQuery locations
            documentation
            <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
            list of available locations. The location must match that of the
            target dataset.

            *New in version 0.5.0 of pandas-gbq*.
        progress_bar : bool, default True
            Use the library `tqdm` to show the progress bar for the upload,
            chunk by chunk.

            *New in version 0.5.0 of pandas-gbq*.
        credentials : google.auth.credentials.Credentials, optional
            Credentials for accessing Google APIs. Use this parameter to
            override default credentials, such as to use Compute Engine
            :class:`google.auth.compute_engine.Credentials` or Service
            Account :class:`google.oauth2.service_account.Credentials`
            directly.

            *New in version 0.8.0 of pandas-gbq*.

        See Also
        --------
        pandas_gbq.to_gbq : This function in the pandas-gbq library.
        read_gbq : Read a DataFrame from Google BigQuery.
        

183. to_hdf
        Write the contained data to an HDF5 file using HDFStore.

        Hierarchical Data Format (HDF) is self-describing, allowing an
        application to interpret the structure and contents of a file with
        no outside information. One HDF file can hold a mix of related objects
        which can be accessed as a group or as individual objects.

        In order to add another DataFrame or Series to an existing HDF file
        please use append mode and a different a key.

        .. warning::

           One can store a subclass of ``DataFrame`` or ``Series`` to HDF5,
           but the type of the subclass is lost upon storing.

        For more information see the :ref:`user guide <io.hdf5>`.

        Parameters
        ----------
        path_or_buf : str or pandas.HDFStore
            File path or HDFStore object.
        key : str
            Identifier for the group in the store.
        mode : {'a', 'w', 'r+'}, default 'a'
            Mode to open file:

            - 'w': write, a new file is created (an existing file with
              the same name would be deleted).
            - 'a': append, an existing file is opened for reading and
              writing, and if the file does not exist it is created.
            - 'r+': similar to 'a', but the file must already exist.
        complevel : {0-9}, default None
            Specifies a compression level for data.
            A value of 0 or None disables compression.
        complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib'
            Specifies the compression library to be used.
            As of v0.20.2 these additional compressors for Blosc are supported
            (default if no compressor specified: 'blosc:blosclz'):
            {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy',
            'blosc:zlib', 'blosc:zstd'}.
            Specifying a compression library which is not available issues
            a ValueError.
        append : bool, default False
            For Table formats, append the input data to the existing.
        format : {'fixed', 'table', None}, default 'fixed'
            Possible values:

            - 'fixed': Fixed format. Fast writing/reading. Not-appendable,
              nor searchable.
            - 'table': Table format. Write as a PyTables Table structure
              which may perform worse but allow more flexible operations
              like searching / selecting subsets of the data.
            - If None, pd.get_option('io.hdf.default_format') is checked,
              followed by fallback to "fixed".
        index : bool, default True
            Write DataFrame index as a column.
        min_itemsize : dict or int, optional
            Map column names to minimum string sizes for columns.
        nan_rep : Any, optional
            How to represent null values as str.
            Not allowed with append=True.
        dropna : bool, default False, optional
            Remove missing values.
        data_columns : list of columns or True, optional
            List of columns to create as indexed data columns for on-disk
            queries, or True to use all columns. By default only the axes
            of the object are indexed. See
            :ref:`Query via data columns<io.hdf5-query-data-columns>`. for
            more information.
            Applicable only to format='table'.
        errors : str, default 'strict'
            Specifies how encoding and decoding errors are to be handled.
            See the errors argument for :func:`open` for a full list
            of options.
        encoding : str, default "UTF-8"

        See Also
        --------
        read_hdf : Read from HDF file.
        DataFrame.to_orc : Write a DataFrame to the binary orc format.
        DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
        DataFrame.to_sql : Write to a SQL table.
        DataFrame.to_feather : Write out feather-format for DataFrames.
        DataFrame.to_csv : Write out to a csv file.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]},
        ...                   index=['a', 'b', 'c'])  # doctest: +SKIP
        >>> df.to_hdf('data.h5', key='df', mode='w')  # doctest: +SKIP

        We can add another object to the same file:

        >>> s = pd.Series([1, 2, 3, 4])  # doctest: +SKIP
        >>> s.to_hdf('data.h5', key='s')  # doctest: +SKIP

        Reading from HDF file:

        >>> pd.read_hdf('data.h5', 'df')  # doctest: +SKIP
        A  B
        a  1  4
        b  2  5
        c  3  6
        >>> pd.read_hdf('data.h5', 's')  # doctest: +SKIP
        0    1
        1    2
        2    3
        3    4
        dtype: int64
        

184. to_html
        Render a DataFrame as an HTML table.
        
        Parameters
        ----------
        buf : str, Path or StringIO-like, optional, default None
            Buffer to write to. If None, the output is returned as a string.
        columns : sequence, optional, default None
            The subset of columns to write. Writes all columns by default.
        col_space : str or int, list or dict of int or str, optional
            The minimum width of each column in CSS length units.  An int is assumed to be px units.

            .. versionadded:: 0.25.0
                Ability to use str.
        header : bool, optional
            Whether to print column labels, default True.
        index : bool, optional, default True
            Whether to print index (row) labels.
        na_rep : str, optional, default 'NaN'
            String representation of ``NaN`` to use.
        formatters : list, tuple or dict of one-param. functions, optional
            Formatter functions to apply to columns' elements by position or
            name.
            The result of each function must be a unicode string.
            List/tuple must be of length equal to the number of columns.
        float_format : one-parameter function, optional, default None
            Formatter function to apply to columns' elements if they are
            floats. This function must return a unicode string and will be
            applied only to the non-``NaN`` elements, with ``NaN`` being
            handled by ``na_rep``.

            .. versionchanged:: 1.2.0

        sparsify : bool, optional, default True
            Set to False for a DataFrame with a hierarchical index to print
            every multiindex key at each row.
        index_names : bool, optional, default True
            Prints the names of the indexes.
        justify : str, default None
            How to justify the column labels. If None uses the option from
            the print configuration (controlled by set_option), 'right' out
            of the box. Valid values are

            * left
            * right
            * center
            * justify
            * justify-all
            * start
            * end
            * inherit
            * match-parent
            * initial
            * unset.
        max_rows : int, optional
            Maximum number of rows to display in the console.
        max_cols : int, optional
            Maximum number of columns to display in the console.
        show_dimensions : bool, default False
            Display DataFrame dimensions (number of rows by number of columns).
        decimal : str, default '.'
            Character recognized as decimal separator, e.g. ',' in Europe.
    
        bold_rows : bool, default True
            Make the row labels bold in the output.
        classes : str or list or tuple, default None
            CSS class(es) to apply to the resulting html table.
        escape : bool, default True
            Convert the characters <, >, and & to HTML-safe sequences.
        notebook : {True, False}, default False
            Whether the generated HTML is for IPython Notebook.
        border : int
            A ``border=border`` attribute is included in the opening
            `<table>` tag. Default ``pd.options.display.html.border``.
        table_id : str, optional
            A css id is included in the opening `<table>` tag if specified.
        render_links : bool, default False
            Convert URLs to HTML links.
        encoding : str, default "utf-8"
            Set character encoding.

            .. versionadded:: 1.0
        
        Returns
        -------
        str or None
            If buf is None, returns the result as a string. Otherwise returns
            None.
    
        See Also
        --------
        to_string : Convert DataFrame to a string.
        

185. to_json
Convert the object to a JSON string.

Note NaN's and None will be converted to null and datetime objects
will be converted to UNIX timestamps.

Parameters
----------
path_or_buf : str, path object, file-like object, or None, default None
    String, path object (implementing os.PathLike[str]), or file-like
    object implementing a write() function. If None, the result is
    returned as a string.
orient : str
    Indication of expected JSON string format.

    * Series:

        - default is 'index'
        - allowed values are: {'split', 'records', 'index', 'table'}.

    * DataFrame:

        - default is 'columns'
        - allowed values are: {'split', 'records', 'index', 'columns',
          'values', 'table'}.

    * The format of the JSON string:

        - 'split' : dict like {'index' -> [index], 'columns' -> [columns],
          'data' -> [values]}
        - 'records' : list like [{column -> value}, ... , {column -> value}]
        - 'index' : dict like {index -> {column -> value}}
        - 'columns' : dict like {column -> {index -> value}}
        - 'values' : just the values array
        - 'table' : dict like {'schema': {schema}, 'data': {data}}

        Describing the data, where data component is like ``orient='records'``.

date_format : {None, 'epoch', 'iso'}
    Type of date conversion. 'epoch' = epoch milliseconds,
    'iso' = ISO8601. The default depends on the `orient`. For
    ``orient='table'``, the default is 'iso'. For all other orients,
    the default is 'epoch'.
double_precision : int, default 10
    The number of decimal places to use when encoding
    floating point values.
force_ascii : bool, default True
    Force encoded string to be ASCII.
date_unit : str, default 'ms' (milliseconds)
    The time unit to encode to, governs timestamp and ISO8601
    precision.  One of 's', 'ms', 'us', 'ns' for second, millisecond,
    microsecond, and nanosecond respectively.
default_handler : callable, default None
    Handler to call if object cannot otherwise be converted to a
    suitable format for JSON. Should receive a single argument which is
    the object to convert and return a serialisable object.
lines : bool, default False
    If 'orient' is 'records' write out line-delimited json format. Will
    throw ValueError if incorrect 'orient' since others are not
    list-like.
compression : str or dict, default 'infer'
    For on-the-fly compression of the output data. If 'infer' and 'path_or_buf' is
    path-like, then detect compression from the following extensions: '.gz',
    '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
    (otherwise no compression).
    Set to ``None`` for no compression.
    Can also be a dict with key ``'method'`` set
    to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
    key-value pairs are forwarded to
    ``zipfile.ZipFile``, ``gzip.GzipFile``,
    ``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
    ``tarfile.TarFile``, respectively.
    As an example, the following could be passed for faster compression and to create
    a reproducible gzip archive:
    ``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.

        .. versionadded:: 1.5.0
            Added support for `.tar` files.

    .. versionchanged:: 1.4.0 Zstandard support.

index : bool, default True
    Whether to include the index values in the JSON string. Not
    including the index (``index=False``) is only supported when
    orient is 'split' or 'table'.
indent : int, optional
   Length of whitespace used to indent each record.

   .. versionadded:: 1.0.0

storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
    are forwarded to ``urllib.request.Request`` as header options. For other
    URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
    forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
    details, and for more examples on storage options refer `here
    <https://pandas.pydata.org/docs/user_guide/io.html?
    highlight=storage_options#reading-writing-remote-files>`_.

    .. versionadded:: 1.2.0

Returns
-------
None or str
    If path_or_buf is None, returns the resulting json format as a
    string. Otherwise returns None.

See Also
--------
read_json : Convert a JSON string to pandas object.

Notes
-----
The behavior of ``indent=0`` varies from the stdlib, which does not
indent the output but does insert newlines. Currently, ``indent=0``
and the default ``indent=None`` are equivalent in pandas, though this
may change in a future release.

``orient='table'`` contains a 'pandas_version' field under 'schema'.
This stores the version of `pandas` used in the latest revision of the
schema.

Examples
--------
>>> import json
>>> df = pd.DataFrame(
...     [["a", "b"], ["c", "d"]],
...     index=["row 1", "row 2"],
...     columns=["col 1", "col 2"],
... )

>>> result = df.to_json(orient="split")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  # doctest: +SKIP
{
    "columns": [
        "col 1",
        "col 2"
    ],
    "index": [
        "row 1",
        "row 2"
    ],
    "data": [
        [
            "a",
            "b"
        ],
        [
            "c",
            "d"
        ]
    ]
}

Encoding/decoding a Dataframe using ``'records'`` formatted JSON.
Note that index labels are not preserved with this encoding.

>>> result = df.to_json(orient="records")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  # doctest: +SKIP
[
    {
        "col 1": "a",
        "col 2": "b"
    },
    {
        "col 1": "c",
        "col 2": "d"
    }
]

Encoding/decoding a Dataframe using ``'index'`` formatted JSON:

>>> result = df.to_json(orient="index")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  # doctest: +SKIP
{
    "row 1": {
        "col 1": "a",
        "col 2": "b"
    },
    "row 2": {
        "col 1": "c",
        "col 2": "d"
    }
}

Encoding/decoding a Dataframe using ``'columns'`` formatted JSON:

>>> result = df.to_json(orient="columns")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  # doctest: +SKIP
{
    "col 1": {
        "row 1": "a",
        "row 2": "c"
    },
    "col 2": {
        "row 1": "b",
        "row 2": "d"
    }
}

Encoding/decoding a Dataframe using ``'values'`` formatted JSON:

>>> result = df.to_json(orient="values")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  # doctest: +SKIP
[
    [
        "a",
        "b"
    ],
    [
        "c",
        "d"
    ]
]

Encoding with Table Schema:

>>> result = df.to_json(orient="table")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  # doctest: +SKIP
{
    "schema": {
        "fields": [
            {
                "name": "index",
                "type": "string"
            },
            {
                "name": "col 1",
                "type": "string"
            },
            {
                "name": "col 2",
                "type": "string"
            }
        ],
        "primaryKey": [
            "index"
        ],
        "pandas_version": "1.4.0"
    },
    "data": [
        {
            "index": "row 1",
            "col 1": "a",
            "col 2": "b"
        },
        {
            "index": "row 2",
            "col 1": "c",
            "col 2": "d"
        }
    ]
}


186. to_latex
Render object to a LaTeX tabular, longtable, or nested table.

Requires ``\usepackage{booktabs}``.  The output can be copy/pasted
into a main LaTeX document or read from an external file
with ``\input{table.tex}``.

.. versionchanged:: 1.0.0
   Added caption and label arguments.

.. versionchanged:: 1.2.0
   Added position argument, changed meaning of caption argument.

Parameters
----------
buf : str, Path or StringIO-like, optional, default None
    Buffer to write to. If None, the output is returned as a string.
columns : list of label, optional
    The subset of columns to write. Writes all columns by default.
col_space : int, optional
    The minimum width of each column.
header : bool or list of str, default True
    Write out the column names. If a list of strings is given,
    it is assumed to be aliases for the column names.
index : bool, default True
    Write row names (index).
na_rep : str, default 'NaN'
    Missing data representation.
formatters : list of functions or dict of {str: function}, optional
    Formatter functions to apply to columns' elements by position or
    name. The result of each function must be a unicode string.
    List must be of length equal to the number of columns.
float_format : one-parameter function or str, optional, default None
    Formatter for floating point numbers. For example
    ``float_format="%.2f"`` and ``float_format="{:0.2f}".format`` will
    both result in 0.1234 being formatted as 0.12.
sparsify : bool, optional
    Set to False for a DataFrame with a hierarchical index to print
    every multiindex key at each row. By default, the value will be
    read from the config module.
index_names : bool, default True
    Prints the names of the indexes.
bold_rows : bool, default False
    Make the row labels bold in the output.
column_format : str, optional
    The columns format as specified in `LaTeX table format
    <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g. 'rcl' for 3
    columns. By default, 'l' will be used for all columns except
    columns of numbers, which default to 'r'.
longtable : bool, optional
    By default, the value will be read from the pandas config
    module. Use a longtable environment instead of tabular. Requires
    adding a \usepackage{longtable} to your LaTeX preamble.
escape : bool, optional
    By default, the value will be read from the pandas config
    module. When set to False prevents from escaping latex special
    characters in column names.
encoding : str, optional
    A string representing the encoding to use in the output file,
    defaults to 'utf-8'.
decimal : str, default '.'
    Character recognized as decimal separator, e.g. ',' in Europe.
multicolumn : bool, default True
    Use \multicolumn to enhance MultiIndex columns.
    The default will be read from the config module.
multicolumn_format : str, default 'l'
    The alignment for multicolumns, similar to `column_format`
    The default will be read from the config module.
multirow : bool, default False
    Use \multirow to enhance MultiIndex rows. Requires adding a
    \usepackage{multirow} to your LaTeX preamble. Will print
    centered labels (instead of top-aligned) across the contained
    rows, separating groups via clines. The default will be read
    from the pandas config module.
caption : str or tuple, optional
    Tuple (full_caption, short_caption),
    which results in ``\caption[short_caption]{full_caption}``;
    if a single string is passed, no short caption will be set.

    .. versionadded:: 1.0.0

    .. versionchanged:: 1.2.0
       Optionally allow caption to be a tuple ``(full_caption, short_caption)``.

label : str, optional
    The LaTeX label to be placed inside ``\label{}`` in the output.
    This is used with ``\ref{}`` in the main ``.tex`` file.

    .. versionadded:: 1.0.0
position : str, optional
    The LaTeX positional argument for tables, to be placed after
    ``\begin{}`` in the output.

    .. versionadded:: 1.2.0

        Returns
        -------
        str or None
            If buf is None, returns the result as a string. Otherwise returns
            None.
    
See Also
--------
io.formats.style.Styler.to_latex : Render a DataFrame to LaTeX
    with conditional formatting.
DataFrame.to_string : Render a DataFrame to a console-friendly
    tabular output.
DataFrame.to_html : Render a DataFrame as an HTML table.

Examples
--------
>>> df = pd.DataFrame(dict(name=['Raphael', 'Donatello'],
...                   mask=['red', 'purple'],
...                   weapon=['sai', 'bo staff']))
>>> print(df.to_latex(index=False))  # doctest: +SKIP
\begin{tabular}{lll}
 \toprule
       name &    mask &    weapon \\
 \midrule
    Raphael &     red &       sai \\
  Donatello &  purple &  bo staff \\
\bottomrule
\end{tabular}


187. to_markdown
Print DataFrame in Markdown-friendly format.

.. versionadded:: 1.0.0

Parameters
----------
buf : str, Path or StringIO-like, optional, default None
    Buffer to write to. If None, the output is returned as a string.
mode : str, optional
    Mode in which file is opened, "wt" by default.
index : bool, optional, default True
    Add index (row) labels.

    .. versionadded:: 1.1.0
storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
    are forwarded to ``urllib.request.Request`` as header options. For other
    URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
    forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
    details, and for more examples on storage options refer `here
    <https://pandas.pydata.org/docs/user_guide/io.html?
    highlight=storage_options#reading-writing-remote-files>`_.

    .. versionadded:: 1.2.0

**kwargs
    These parameters will be passed to `tabulate                 <https://pypi.org/project/tabulate>`_.

Returns
-------
str
    DataFrame in Markdown-friendly format.

Notes
-----
Requires the `tabulate <https://pypi.org/project/tabulate>`_ package.

Examples
        --------
        >>> df = pd.DataFrame(
        ...     data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]}
        ... )
        >>> print(df.to_markdown())
        |    | animal_1   | animal_2   |
        |---:|:-----------|:-----------|
        |  0 | elk        | dog        |
        |  1 | pig        | quetzal    |

        Output markdown with a tabulate option.

        >>> print(df.to_markdown(tablefmt="grid"))
        +----+------------+------------+
        |    | animal_1   | animal_2   |
        +====+============+============+
        |  0 | elk        | dog        |
        +----+------------+------------+
        |  1 | pig        | quetzal    |
        +----+------------+------------+


188. to_numpy
        Convert the DataFrame to a NumPy array.

        By default, the dtype of the returned array will be the common NumPy
        dtype of all types in the DataFrame. For example, if the dtypes are
        ``float16`` and ``float32``, the results dtype will be ``float32``.
        This may require copying data and coercing values, which may be
        expensive.

        Parameters
        ----------
        dtype : str or numpy.dtype, optional
            The dtype to pass to :meth:`numpy.asarray`.
        copy : bool, default False
            Whether to ensure that the returned value is not a view on
            another array. Note that ``copy=False`` does not *ensure* that
            ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
            a copy is made, even if not strictly necessary.
        na_value : Any, optional
            The value to use for missing values. The default value depends
            on `dtype` and the dtypes of the DataFrame columns.

            .. versionadded:: 1.1.0

        Returns
        -------
        numpy.ndarray

        See Also
        --------
        Series.to_numpy : Similar method for Series.

        Examples
        --------
        >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy()
        array([[1, 3],
               [2, 4]])

        With heterogeneous data, the lowest common type will have to
        be used.

        >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]})
        >>> df.to_numpy()
        array([[1. , 3. ],
               [2. , 4.5]])

        For a mix of numeric and non-numeric types, the output array will
        have object dtype.

        >>> df['C'] = pd.date_range('2000', periods=2)
        >>> df.to_numpy()
        array([[1, 3.0, Timestamp('2000-01-01 00:00:00')],
               [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
        

189. to_orc
        Write a DataFrame to the ORC format.

        .. versionadded:: 1.5.0

        Parameters
        ----------
        path : str, file-like object or None, default None
            If a string, it will be used as Root Directory path
            when writing a partitioned dataset. By file-like object,
            we refer to objects with a write() method, such as a file handle
            (e.g. via builtin open function). If path is None,
            a bytes object is returned.
        engine : str, default 'pyarrow'
            ORC library to use. Pyarrow must be >= 7.0.0.
        index : bool, optional
            If ``True``, include the dataframe's index(es) in the file output.
            If ``False``, they will not be written to the file.
            If ``None``, similar to ``infer`` the dataframe's index(es)
            will be saved. However, instead of being saved as values,
            the RangeIndex will be stored as a range in the metadata so it
            doesn't require much space and is faster. Other indexes will
            be included as columns in the file output.
        engine_kwargs : dict[str, Any] or None, default None
            Additional keyword arguments passed to :func:`pyarrow.orc.write_table`.

        Returns
        -------
        bytes if no path argument is provided else None

        Raises
        ------
        NotImplementedError
            Dtype of one or more columns is category, unsigned integers, interval,
            period or sparse.
        ValueError
            engine is not pyarrow.

        See Also
        --------
        read_orc : Read a ORC file.
        DataFrame.to_parquet : Write a parquet file.
        DataFrame.to_csv : Write a csv file.
        DataFrame.to_sql : Write to a sql table.
        DataFrame.to_hdf : Write to hdf.

        Notes
        -----
        * Before using this function you should read the :ref:`user guide about
          ORC <io.orc>` and :ref:`install optional dependencies <install.warn_orc>`.
        * This function requires `pyarrow <https://arrow.apache.org/docs/python/>`_
          library.
        * For supported dtypes please refer to `supported ORC features in Arrow
          <https://arrow.apache.org/docs/cpp/orc.html#data-types>`__.
        * Currently timezones in datetime columns are not preserved when a
          dataframe is converted into ORC files.

        Examples
        --------
        >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [4, 3]})
        >>> df.to_orc('df.orc')  # doctest: +SKIP
        >>> pd.read_orc('df.orc')  # doctest: +SKIP
           col1  col2
        0     1     4
        1     2     3

        If you want to get a buffer to the orc content you can write it to io.BytesIO
        >>> import io
        >>> b = io.BytesIO(df.to_orc())  # doctest: +SKIP
        >>> b.seek(0)  # doctest: +SKIP
        0
        >>> content = b.read()  # doctest: +SKIP
        

190. to_parquet
Write a DataFrame to the binary parquet format.

This function writes the dataframe as a `parquet file
<https://parquet.apache.org/>`_. You can choose different parquet
backends, and have the option of compression. See
:ref:`the user guide <io.parquet>` for more details.

Parameters
----------
path : str, path object, file-like object, or None, default None
    String, path object (implementing ``os.PathLike[str]``), or file-like
    object implementing a binary ``write()`` function. If None, the result is
    returned as bytes. If a string or path, it will be used as Root Directory
    path when writing a partitioned dataset.

    .. versionchanged:: 1.2.0

    Previously this was "fname"

engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto'
    Parquet library to use. If 'auto', then the option
    ``io.parquet.engine`` is used. The default ``io.parquet.engine``
    behavior is to try 'pyarrow', falling back to 'fastparquet' if
    'pyarrow' is unavailable.
compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
    Name of the compression to use. Use ``None`` for no compression.
index : bool, default None
    If ``True``, include the dataframe's index(es) in the file output.
    If ``False``, they will not be written to the file.
    If ``None``, similar to ``True`` the dataframe's index(es)
    will be saved. However, instead of being saved as values,
    the RangeIndex will be stored as a range in the metadata so it
    doesn't require much space and is faster. Other indexes will
    be included as columns in the file output.
partition_cols : list, optional, default None
    Column names by which to partition the dataset.
    Columns are partitioned in the order they are given.
    Must be None if path is not a string.
storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
    are forwarded to ``urllib.request.Request`` as header options. For other
    URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
    forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
    details, and for more examples on storage options refer `here
    <https://pandas.pydata.org/docs/user_guide/io.html?
    highlight=storage_options#reading-writing-remote-files>`_.

    .. versionadded:: 1.2.0

**kwargs
    Additional arguments passed to the parquet library. See
    :ref:`pandas io <io.parquet>` for more details.

Returns
-------
bytes if no path argument is provided else None

See Also
--------
read_parquet : Read a parquet file.
DataFrame.to_orc : Write an orc file.
DataFrame.to_csv : Write a csv file.
DataFrame.to_sql : Write to a sql table.
DataFrame.to_hdf : Write to hdf.

Notes
-----
This function requires either the `fastparquet
<https://pypi.org/project/fastparquet>`_ or `pyarrow
<https://arrow.apache.org/docs/python/>`_ library.

Examples
--------
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
>>> df.to_parquet('df.parquet.gzip',
...               compression='gzip')  # doctest: +SKIP
>>> pd.read_parquet('df.parquet.gzip')  # doctest: +SKIP
   col1  col2
0     1     3
1     2     4

If you want to get a buffer to the parquet content you can use a io.BytesIO
object, as long as you don't use partition_cols, which creates multiple files.

>>> import io
>>> f = io.BytesIO()
>>> df.to_parquet(f)
>>> f.seek(0)
0
>>> content = f.read()


191. to_period
        Convert DataFrame from DatetimeIndex to PeriodIndex.

        Convert DataFrame from DatetimeIndex to PeriodIndex with desired
        frequency (inferred from index if not passed).

        Parameters
        ----------
        freq : str, default
            Frequency of the PeriodIndex.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            The axis to convert (the index by default).
        copy : bool, default True
            If False then underlying input data is not copied.

        Returns
        -------
        DataFrame with PeriodIndex

        Examples
        --------
        >>> idx = pd.to_datetime(
        ...     [
        ...         "2001-03-31 00:00:00",
        ...         "2002-05-31 00:00:00",
        ...         "2003-08-31 00:00:00",
        ...     ]
        ... )

        >>> idx
        DatetimeIndex(['2001-03-31', '2002-05-31', '2003-08-31'],
        dtype='datetime64[ns]', freq=None)

        >>> idx.to_period("M")
        PeriodIndex(['2001-03', '2002-05', '2003-08'], dtype='period[M]')

        For the yearly frequency

        >>> idx.to_period("Y")
        PeriodIndex(['2001', '2002', '2003'], dtype='period[A-DEC]')
        

192. to_pickle
Pickle (serialize) object to file.

Parameters
----------
path : str, path object, or file-like object
    String, path object (implementing ``os.PathLike[str]``), or file-like
    object implementing a binary ``write()`` function. File path where
    the pickled object will be stored.
compression : str or dict, default 'infer'
    For on-the-fly compression of the output data. If 'infer' and 'path' is
    path-like, then detect compression from the following extensions: '.gz',
    '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
    (otherwise no compression).
    Set to ``None`` for no compression.
    Can also be a dict with key ``'method'`` set
    to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
    key-value pairs are forwarded to
    ``zipfile.ZipFile``, ``gzip.GzipFile``,
    ``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
    ``tarfile.TarFile``, respectively.
    As an example, the following could be passed for faster compression and to create
    a reproducible gzip archive:
    ``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.

        .. versionadded:: 1.5.0
            Added support for `.tar` files.
protocol : int
    Int which indicates which protocol should be used by the pickler,
    default HIGHEST_PROTOCOL (see [1]_ paragraph 12.1.2). The possible
    values are 0, 1, 2, 3, 4, 5. A negative value for the protocol
    parameter is equivalent to setting its value to HIGHEST_PROTOCOL.

    .. [1] https://docs.python.org/3/library/pickle.html.

storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
    are forwarded to ``urllib.request.Request`` as header options. For other
    URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
    forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
    details, and for more examples on storage options refer `here
    <https://pandas.pydata.org/docs/user_guide/io.html?
    highlight=storage_options#reading-writing-remote-files>`_.

    .. versionadded:: 1.2.0

See Also
--------
read_pickle : Load pickled pandas object (or any object) from file.
DataFrame.to_hdf : Write DataFrame to an HDF5 file.
DataFrame.to_sql : Write DataFrame to a SQL database.
DataFrame.to_parquet : Write a DataFrame to the binary parquet format.

Examples
--------
>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})  # doctest: +SKIP
>>> original_df  # doctest: +SKIP
   foo  bar
0    0    5
1    1    6
2    2    7
3    3    8
4    4    9
>>> original_df.to_pickle("./dummy.pkl")  # doctest: +SKIP

>>> unpickled_df = pd.read_pickle("./dummy.pkl")  # doctest: +SKIP
>>> unpickled_df  # doctest: +SKIP
   foo  bar
0    0    5
1    1    6
2    2    7
3    3    8
4    4    9


193. to_records
        Convert DataFrame to a NumPy record array.

        Index will be included as the first field of the record array if
        requested.

        Parameters
        ----------
        index : bool, default True
            Include index in resulting record array, stored in 'index'
            field or using the index label, if set.
        column_dtypes : str, type, dict, default None
            If a string or type, the data type to store all columns. If
            a dictionary, a mapping of column names and indices (zero-indexed)
            to specific data types.
        index_dtypes : str, type, dict, default None
            If a string or type, the data type to store all index levels. If
            a dictionary, a mapping of index level names and indices
            (zero-indexed) to specific data types.

            This mapping is applied only if `index=True`.

        Returns
        -------
        numpy.recarray
            NumPy ndarray with the DataFrame labels as fields and each row
            of the DataFrame as entries.

        See Also
        --------
        DataFrame.from_records: Convert structured or record ndarray
            to DataFrame.
        numpy.recarray: An ndarray that allows field access using
            attributes, analogous to typed columns in a
            spreadsheet.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]},
        ...                   index=['a', 'b'])
        >>> df
           A     B
        a  1  0.50
        b  2  0.75
        >>> df.to_records()
        rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
                  dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')])

        If the DataFrame index has no label then the recarray field name
        is set to 'index'. If the index has a label then this is used as the
        field name:

        >>> df.index = df.index.rename("I")
        >>> df.to_records()
        rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
                  dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')])

        The index can be excluded from the record array:

        >>> df.to_records(index=False)
        rec.array([(1, 0.5 ), (2, 0.75)],
                  dtype=[('A', '<i8'), ('B', '<f8')])

        Data types can be specified for the columns:

        >>> df.to_records(column_dtypes={"A": "int32"})
        rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)],
                  dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')])

        As well as for the index:

        >>> df.to_records(index_dtypes="<S2")
        rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
                  dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')])

        >>> index_dtypes = f"<S{df.index.str.len().max()}"
        >>> df.to_records(index_dtypes=index_dtypes)
        rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)],
                  dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
        

194. to_sql
        Write records stored in a DataFrame to a SQL database.

        Databases supported by SQLAlchemy [1]_ are supported. Tables can be
        newly created, appended to, or overwritten.

        Parameters
        ----------
        name : str
            Name of SQL table.
        con : sqlalchemy.engine.(Engine or Connection) or sqlite3.Connection
            Using SQLAlchemy makes it possible to use any DB supported by that
            library. Legacy support is provided for sqlite3.Connection objects. The user
            is responsible for engine disposal and connection closure for the SQLAlchemy
            connectable See `here                 <https://docs.sqlalchemy.org/en/13/core/connections.html>`_.

        schema : str, optional
            Specify the schema (if database flavor supports this). If None, use
            default schema.
        if_exists : {'fail', 'replace', 'append'}, default 'fail'
            How to behave if the table already exists.

            * fail: Raise a ValueError.
            * replace: Drop the table before inserting new values.
            * append: Insert new values to the existing table.

        index : bool, default True
            Write DataFrame index as a column. Uses `index_label` as the column
            name in the table.
        index_label : str or sequence, default None
            Column label for index column(s). If None is given (default) and
            `index` is True, then the index names are used.
            A sequence should be given if the DataFrame uses MultiIndex.
        chunksize : int, optional
            Specify the number of rows in each batch to be written at a time.
            By default, all rows will be written at once.
        dtype : dict or scalar, optional
            Specifying the datatype for columns. If a dictionary is used, the
            keys should be the column names and the values should be the
            SQLAlchemy types or strings for the sqlite3 legacy mode. If a
            scalar is provided, it will be applied to all columns.
        method : {None, 'multi', callable}, optional
            Controls the SQL insertion clause used:

            * None : Uses standard SQL ``INSERT`` clause (one per row).
            * 'multi': Pass multiple values in a single ``INSERT`` clause.
            * callable with signature ``(pd_table, conn, keys, data_iter)``.

            Details and a sample callable implementation can be found in the
            section :ref:`insert method <io.sql.method>`.

        Returns
        -------
        None or int
            Number of rows affected by to_sql. None is returned if the callable
            passed into ``method`` does not return an integer number of rows.

            The number of returned rows affected is the sum of the ``rowcount``
            attribute of ``sqlite3.Cursor`` or SQLAlchemy connectable which may not
            reflect the exact number of written rows as stipulated in the
            `sqlite3 <https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.rowcount>`__ or
            `SQLAlchemy <https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.BaseCursorResult.rowcount>`__.

            .. versionadded:: 1.4.0

        Raises
        ------
        ValueError
            When the table already exists and `if_exists` is 'fail' (the
            default).

        See Also
        --------
        read_sql : Read a DataFrame from a table.

        Notes
        -----
        Timezone aware datetime columns will be written as
        ``Timestamp with timezone`` type with SQLAlchemy if supported by the
        database. Otherwise, the datetimes will be stored as timezone unaware
        timestamps local to the original timezone.

        References
        ----------
        .. [1] https://docs.sqlalchemy.org
        .. [2] https://www.python.org/dev/peps/pep-0249/

        Examples
        --------
        Create an in-memory SQLite database.

        >>> from sqlalchemy import create_engine
        >>> engine = create_engine('sqlite://', echo=False)

        Create a table from scratch with 3 rows.

        >>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']})
        >>> df
             name
        0  User 1
        1  User 2
        2  User 3

        >>> df.to_sql('users', con=engine)
        3
        >>> engine.execute("SELECT * FROM users").fetchall()
        [(0, 'User 1'), (1, 'User 2'), (2, 'User 3')]

        An `sqlalchemy.engine.Connection` can also be passed to `con`:

        >>> with engine.begin() as connection:
        ...     df1 = pd.DataFrame({'name' : ['User 4', 'User 5']})
        ...     df1.to_sql('users', con=connection, if_exists='append')
        2

        This is allowed to support operations that require that the same
        DBAPI connection is used for the entire operation.

        >>> df2 = pd.DataFrame({'name' : ['User 6', 'User 7']})
        >>> df2.to_sql('users', con=engine, if_exists='append')
        2
        >>> engine.execute("SELECT * FROM users").fetchall()
        [(0, 'User 1'), (1, 'User 2'), (2, 'User 3'),
         (0, 'User 4'), (1, 'User 5'), (0, 'User 6'),
         (1, 'User 7')]

        Overwrite the table with just ``df2``.

        >>> df2.to_sql('users', con=engine, if_exists='replace',
        ...            index_label='id')
        2
        >>> engine.execute("SELECT * FROM users").fetchall()
        [(0, 'User 6'), (1, 'User 7')]

        Specify the dtype (especially useful for integers with missing values).
        Notice that while pandas is forced to store the data as floating point,
        the database supports nullable integers. When fetching the data with
        Python, we get back integer scalars.

        >>> df = pd.DataFrame({"A": [1, None, 2]})
        >>> df
             A
        0  1.0
        1  NaN
        2  2.0

        >>> from sqlalchemy.types import Integer
        >>> df.to_sql('integers', con=engine, index=False,
        ...           dtype={"A": Integer()})
        3

        >>> engine.execute("SELECT * FROM integers").fetchall()
        [(1,), (None,), (2,)]
        

195. to_stata
Export DataFrame object to Stata dta format.

Writes the DataFrame to a Stata dataset file.
"dta" files contain a Stata dataset.

Parameters
----------
path : str, path object, or buffer
    String, path object (implementing ``os.PathLike[str]``), or file-like
    object implementing a binary ``write()`` function.

    .. versionchanged:: 1.0.0

    Previously this was "fname"

convert_dates : dict
    Dictionary mapping columns containing datetime types to stata
    internal format to use when writing the dates. Options are 'tc',
    'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer
    or a name. Datetime columns that do not have a conversion type
    specified will be converted to 'tc'. Raises NotImplementedError if
    a datetime column has timezone information.
write_index : bool
    Write the index to Stata dataset.
byteorder : str
    Can be ">", "<", "little", or "big". default is `sys.byteorder`.
time_stamp : datetime
    A datetime to use as file creation date.  Default is the current
    time.
data_label : str, optional
    A label for the data set.  Must be 80 characters or smaller.
variable_labels : dict
    Dictionary containing columns as keys and variable labels as
    values. Each label must be 80 characters or smaller.
version : {114, 117, 118, 119, None}, default 114
    Version to use in the output dta file. Set to None to let pandas
    decide between 118 or 119 formats depending on the number of
    columns in the frame. Version 114 can be read by Stata 10 and
    later. Version 117 can be read by Stata 13 or later. Version 118
    is supported in Stata 14 and later. Version 119 is supported in
    Stata 15 and later. Version 114 limits string variables to 244
    characters or fewer while versions 117 and later allow strings
    with lengths up to 2,000,000 characters. Versions 118 and 119
    support Unicode characters, and version 119 supports more than
    32,767 variables.

    Version 119 should usually only be used when the number of
    variables exceeds the capacity of dta format 118. Exporting
    smaller datasets in format 119 may have unintended consequences,
    and, as of November 2020, Stata SE cannot read version 119 files.

    .. versionchanged:: 1.0.0

        Added support for formats 118 and 119.

convert_strl : list, optional
    List of column names to convert to string columns to Stata StrL
    format. Only available if version is 117.  Storing strings in the
    StrL format can produce smaller dta files if strings have more than
    8 characters and values are repeated.
compression : str or dict, default 'infer'
    For on-the-fly compression of the output data. If 'infer' and 'path' is
    path-like, then detect compression from the following extensions: '.gz',
    '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
    (otherwise no compression).
    Set to ``None`` for no compression.
    Can also be a dict with key ``'method'`` set
    to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
    key-value pairs are forwarded to
    ``zipfile.ZipFile``, ``gzip.GzipFile``,
    ``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
    ``tarfile.TarFile``, respectively.
    As an example, the following could be passed for faster compression and to create
    a reproducible gzip archive:
    ``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.

        .. versionadded:: 1.5.0
            Added support for `.tar` files.

    .. versionadded:: 1.1.0

    .. versionchanged:: 1.4.0 Zstandard support.

storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
    are forwarded to ``urllib.request.Request`` as header options. For other
    URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
    forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
    details, and for more examples on storage options refer `here
    <https://pandas.pydata.org/docs/user_guide/io.html?
    highlight=storage_options#reading-writing-remote-files>`_.

    .. versionadded:: 1.2.0

value_labels : dict of dicts
    Dictionary containing columns as keys and dictionaries of column value
    to labels as values. Labels for a single variable must be 32,000
    characters or smaller.

    .. versionadded:: 1.4.0

Raises
------
NotImplementedError
    * If datetimes contain timezone information
    * Column dtype is not representable in Stata
ValueError
    * Columns listed in convert_dates are neither datetime64[ns]
      or datetime.datetime
    * Column listed in convert_dates is not in DataFrame
    * Categorical label contains more than 32,000 characters

See Also
--------
read_stata : Import Stata data files.
io.stata.StataWriter : Low-level writer for Stata data files.
io.stata.StataWriter117 : Low-level writer for version 117 files.

Examples
--------
>>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon',
...                               'parrot'],
...                    'speed': [350, 18, 361, 15]})
>>> df.to_stata('animals.dta')  # doctest: +SKIP


196. to_string
        Render a DataFrame to a console-friendly tabular output.
        
        Parameters
        ----------
        buf : str, Path or StringIO-like, optional, default None
            Buffer to write to. If None, the output is returned as a string.
        columns : sequence, optional, default None
            The subset of columns to write. Writes all columns by default.
        col_space : int, list or dict of int, optional
            The minimum width of each column. If a list of ints is given every integers corresponds with one column. If a dict is given, the key references the column, while the value defines the space to use..
        header : bool or sequence of str, optional
            Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.
        index : bool, optional, default True
            Whether to print index (row) labels.
        na_rep : str, optional, default 'NaN'
            String representation of ``NaN`` to use.
        formatters : list, tuple or dict of one-param. functions, optional
            Formatter functions to apply to columns' elements by position or
            name.
            The result of each function must be a unicode string.
            List/tuple must be of length equal to the number of columns.
        float_format : one-parameter function, optional, default None
            Formatter function to apply to columns' elements if they are
            floats. This function must return a unicode string and will be
            applied only to the non-``NaN`` elements, with ``NaN`` being
            handled by ``na_rep``.

            .. versionchanged:: 1.2.0

        sparsify : bool, optional, default True
            Set to False for a DataFrame with a hierarchical index to print
            every multiindex key at each row.
        index_names : bool, optional, default True
            Prints the names of the indexes.
        justify : str, default None
            How to justify the column labels. If None uses the option from
            the print configuration (controlled by set_option), 'right' out
            of the box. Valid values are

            * left
            * right
            * center
            * justify
            * justify-all
            * start
            * end
            * inherit
            * match-parent
            * initial
            * unset.
        max_rows : int, optional
            Maximum number of rows to display in the console.
        max_cols : int, optional
            Maximum number of columns to display in the console.
        show_dimensions : bool, default False
            Display DataFrame dimensions (number of rows by number of columns).
        decimal : str, default '.'
            Character recognized as decimal separator, e.g. ',' in Europe.
    
        line_width : int, optional
            Width to wrap a line in characters.
        min_rows : int, optional
            The number of rows to display in the console in a truncated repr
            (when number of rows is above `max_rows`).
        max_colwidth : int, optional
            Max width to truncate each column in characters. By default, no limit.

            .. versionadded:: 1.0.0
        encoding : str, default "utf-8"
            Set character encoding.

            .. versionadded:: 1.0
        
        Returns
        -------
        str or None
            If buf is None, returns the result as a string. Otherwise returns
            None.
    
        See Also
        --------
        to_html : Convert DataFrame to HTML.

        Examples
        --------
        >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]}
        >>> df = pd.DataFrame(d)
        >>> print(df.to_string())
           col1  col2
        0     1     4
        1     2     5
        2     3     6
        

197. to_timestamp
        Cast to DatetimeIndex of timestamps, at *beginning* of period.

        Parameters
        ----------
        freq : str, default frequency of PeriodIndex
            Desired frequency.
        how : {'s', 'e', 'start', 'end'}
            Convention for converting period to timestamp; start of period
            vs. end.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            The axis to convert (the index by default).
        copy : bool, default True
            If False then underlying input data is not copied.

        Returns
        -------
        DataFrame with DatetimeIndex
        

198. to_xarray
        Return an xarray object from the pandas object.

        Returns
        -------
        xarray.DataArray or xarray.Dataset
            Data in the pandas structure converted to Dataset if the object is
            a DataFrame, or a DataArray if the object is a Series.

        See Also
        --------
        DataFrame.to_hdf : Write DataFrame to an HDF5 file.
        DataFrame.to_parquet : Write a DataFrame to the binary parquet format.

        Notes
        -----
        See the `xarray docs <https://xarray.pydata.org/en/stable/>`__

        Examples
        --------
        >>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2),
        ...                    ('parrot', 'bird', 24.0, 2),
        ...                    ('lion', 'mammal', 80.5, 4),
        ...                    ('monkey', 'mammal', np.nan, 4)],
        ...                   columns=['name', 'class', 'max_speed',
        ...                            'num_legs'])
        >>> df
             name   class  max_speed  num_legs
        0  falcon    bird      389.0         2
        1  parrot    bird       24.0         2
        2    lion  mammal       80.5         4
        3  monkey  mammal        NaN         4

        >>> df.to_xarray()
        <xarray.Dataset>
        Dimensions:    (index: 4)
        Coordinates:
          * index      (index) int64 0 1 2 3
        Data variables:
            name       (index) object 'falcon' 'parrot' 'lion' 'monkey'
            class      (index) object 'bird' 'bird' 'mammal' 'mammal'
            max_speed  (index) float64 389.0 24.0 80.5 nan
            num_legs   (index) int64 2 2 4 4

        >>> df['max_speed'].to_xarray()
        <xarray.DataArray 'max_speed' (index: 4)>
        array([389. ,  24. ,  80.5,   nan])
        Coordinates:
          * index    (index) int64 0 1 2 3

        >>> dates = pd.to_datetime(['2018-01-01', '2018-01-01',
        ...                         '2018-01-02', '2018-01-02'])
        >>> df_multiindex = pd.DataFrame({'date': dates,
        ...                               'animal': ['falcon', 'parrot',
        ...                                          'falcon', 'parrot'],
        ...                               'speed': [350, 18, 361, 15]})
        >>> df_multiindex = df_multiindex.set_index(['date', 'animal'])

        >>> df_multiindex
                           speed
        date       animal
        2018-01-01 falcon    350
                   parrot     18
        2018-01-02 falcon    361
                   parrot     15

        >>> df_multiindex.to_xarray()
        <xarray.Dataset>
        Dimensions:  (date: 2, animal: 2)
        Coordinates:
          * date     (date) datetime64[ns] 2018-01-01 2018-01-02
          * animal   (animal) object 'falcon' 'parrot'
        Data variables:
            speed    (date, animal) int64 350 18 361 15
        

199. to_xml
Render a DataFrame to an XML document.

.. versionadded:: 1.3.0

Parameters
----------
path_or_buffer : str, path object, file-like object, or None, default None
    String, path object (implementing ``os.PathLike[str]``), or file-like
    object implementing a ``write()`` function. If None, the result is returned
    as a string.
index : bool, default True
    Whether to include index in XML document.
root_name : str, default 'data'
    The name of root element in XML document.
row_name : str, default 'row'
    The name of row element in XML document.
na_rep : str, optional
    Missing data representation.
attr_cols : list-like, optional
    List of columns to write as attributes in row element.
    Hierarchical columns will be flattened with underscore
    delimiting the different levels.
elem_cols : list-like, optional
    List of columns to write as children in row element. By default,
    all columns output as children of row element. Hierarchical
    columns will be flattened with underscore delimiting the
    different levels.
namespaces : dict, optional
    All namespaces to be defined in root element. Keys of dict
    should be prefix names and values of dict corresponding URIs.
    Default namespaces should be given empty string key. For
    example, ::

        namespaces = {"": "https://example.com"}

prefix : str, optional
    Namespace prefix to be used for every element and/or attribute
    in document. This should be one of the keys in ``namespaces``
    dict.
encoding : str, default 'utf-8'
    Encoding of the resulting document.
xml_declaration : bool, default True
    Whether to include the XML declaration at start of document.
pretty_print : bool, default True
    Whether output should be pretty printed with indentation and
    line breaks.
parser : {'lxml','etree'}, default 'lxml'
    Parser module to use for building of tree. Only 'lxml' and
    'etree' are supported. With 'lxml', the ability to use XSLT
    stylesheet is supported.
stylesheet : str, path object or file-like object, optional
    A URL, file-like object, or a raw string containing an XSLT
    script used to transform the raw XML output. Script should use
    layout of elements and attributes from original output. This
    argument requires ``lxml`` to be installed. Only XSLT 1.0
    scripts and not later versions is currently supported.
compression : str or dict, default 'infer'
    For on-the-fly compression of the output data. If 'infer' and 'path_or_buffer' is
    path-like, then detect compression from the following extensions: '.gz',
    '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
    (otherwise no compression).
    Set to ``None`` for no compression.
    Can also be a dict with key ``'method'`` set
    to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
    key-value pairs are forwarded to
    ``zipfile.ZipFile``, ``gzip.GzipFile``,
    ``bz2.BZ2File``, ``zstandard.ZstdCompressor`` or
    ``tarfile.TarFile``, respectively.
    As an example, the following could be passed for faster compression and to create
    a reproducible gzip archive:
    ``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.

        .. versionadded:: 1.5.0
            Added support for `.tar` files.

    .. versionchanged:: 1.4.0 Zstandard support.

storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
    are forwarded to ``urllib.request.Request`` as header options. For other
    URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
    forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
    details, and for more examples on storage options refer `here
    <https://pandas.pydata.org/docs/user_guide/io.html?
    highlight=storage_options#reading-writing-remote-files>`_.

Returns
-------
None or str
    If ``io`` is None, returns the resulting XML format as a
    string. Otherwise returns None.

See Also
--------
to_json : Convert the pandas object to a JSON string.
to_html : Convert DataFrame to a html.

Examples
--------
>>> df = pd.DataFrame({'shape': ['square', 'circle', 'triangle'],
...                    'degrees': [360, 360, 180],
...                    'sides': [4, np.nan, 3]})

>>> df.to_xml()  # doctest: +SKIP
<?xml version='1.0' encoding='utf-8'?>
<data>
  <row>
    <index>0</index>
    <shape>square</shape>
    <degrees>360</degrees>
    <sides>4.0</sides>
  </row>
  <row>
    <index>1</index>
    <shape>circle</shape>
    <degrees>360</degrees>
    <sides/>
  </row>
  <row>
    <index>2</index>
    <shape>triangle</shape>
    <degrees>180</degrees>
    <sides>3.0</sides>
  </row>
</data>

>>> df.to_xml(attr_cols=[
...           'index', 'shape', 'degrees', 'sides'
...           ])  # doctest: +SKIP
<?xml version='1.0' encoding='utf-8'?>
<data>
  <row index="0" shape="square" degrees="360" sides="4.0"/>
  <row index="1" shape="circle" degrees="360"/>
  <row index="2" shape="triangle" degrees="180" sides="3.0"/>
</data>

>>> df.to_xml(namespaces={"doc": "https://example.com"},
...           prefix="doc")  # doctest: +SKIP
<?xml version='1.0' encoding='utf-8'?>
<doc:data xmlns:doc="https://example.com">
  <doc:row>
    <doc:index>0</doc:index>
    <doc:shape>square</doc:shape>
    <doc:degrees>360</doc:degrees>
    <doc:sides>4.0</doc:sides>
  </doc:row>
  <doc:row>
    <doc:index>1</doc:index>
    <doc:shape>circle</doc:shape>
    <doc:degrees>360</doc:degrees>
    <doc:sides/>
  </doc:row>
  <doc:row>
    <doc:index>2</doc:index>
    <doc:shape>triangle</doc:shape>
    <doc:degrees>180</doc:degrees>
    <doc:sides>3.0</doc:sides>
  </doc:row>
</doc:data>


200. transform
Call ``func`` on self producing a DataFrame with the same axis shape as self.

Parameters
----------
func : function, str, list-like or dict-like
    Function to use for transforming the data. If a function, must either
    work when passed a DataFrame or when passed to DataFrame.apply. If func
    is both list-like and dict-like, dict-like behavior takes precedence.

    Accepted combinations are:

    - function
    - string function name
    - list-like of functions and/or function names, e.g. ``[np.exp, 'sqrt']``
    - dict-like of axis labels -> functions, function names or list-like of such.
axis : {0 or 'index', 1 or 'columns'}, default 0
        If 0 or 'index': apply function to each column.
        If 1 or 'columns': apply function to each row.
*args
    Positional arguments to pass to `func`.
**kwargs
    Keyword arguments to pass to `func`.

Returns
-------
DataFrame
    A DataFrame that must have the same length as self.

Raises
------
ValueError : If the returned DataFrame has a different length than self.

See Also
--------
DataFrame.agg : Only perform aggregating type operations.
DataFrame.apply : Invoke function on a DataFrame.

Notes
-----
Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.

Examples
--------
>>> df = pd.DataFrame({'A': range(3), 'B': range(1, 4)})
>>> df
   A  B
0  0  1
1  1  2
2  2  3
>>> df.transform(lambda x: x + 1)
   A  B
0  1  2
1  2  3
2  3  4

Even though the resulting DataFrame must have the same length as the
input DataFrame, it is possible to provide several input functions:

>>> s = pd.Series(range(3))
>>> s
0    0
1    1
2    2
dtype: int64
>>> s.transform([np.sqrt, np.exp])
       sqrt        exp
0  0.000000   1.000000
1  1.000000   2.718282
2  1.414214   7.389056

You can call transform on a GroupBy object:

>>> df = pd.DataFrame({
...     "Date": [
...         "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05",
...         "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05"],
...     "Data": [5, 8, 6, 1, 50, 100, 60, 120],
... })
>>> df
         Date  Data
0  2015-05-08     5
1  2015-05-07     8
2  2015-05-06     6
3  2015-05-05     1
4  2015-05-08    50
5  2015-05-07   100
6  2015-05-06    60
7  2015-05-05   120
>>> df.groupby('Date')['Data'].transform('sum')
0     55
1    108
2     66
3    121
4     55
5    108
6     66
7    121
Name: Data, dtype: int64

>>> df = pd.DataFrame({
...     "c": [1, 1, 1, 2, 2, 2, 2],
...     "type": ["m", "n", "o", "m", "m", "n", "n"]
... })
>>> df
   c type
0  1    m
1  1    n
2  1    o
3  2    m
4  2    m
5  2    n
6  2    n
>>> df['size'] = df.groupby('c')['type'].transform(len)
>>> df
   c type size
0  1    m    3
1  1    n    3
2  1    o    3
3  2    m    4
4  2    m    4
5  2    n    4
6  2    n    4


201. transpose
        Transpose index and columns.

        Reflect the DataFrame over its main diagonal by writing rows as columns
        and vice-versa. The property :attr:`.T` is an accessor to the method
        :meth:`transpose`.

        Parameters
        ----------
        *args : tuple, optional
            Accepted for compatibility with NumPy.
        copy : bool, default False
            Whether to copy the data after transposing, even for DataFrames
            with a single dtype.

            Note that a copy is always required for mixed dtype DataFrames,
            or for DataFrames with any extension types.

        Returns
        -------
        DataFrame
            The transposed DataFrame.

        See Also
        --------
        numpy.transpose : Permute the dimensions of a given array.

        Notes
        -----
        Transposing a DataFrame with mixed dtypes will result in a homogeneous
        DataFrame with the `object` dtype. In such a case, a copy of the data
        is always made.

        Examples
        --------
        **Square DataFrame with homogeneous dtype**

        >>> d1 = {'col1': [1, 2], 'col2': [3, 4]}
        >>> df1 = pd.DataFrame(data=d1)
        >>> df1
           col1  col2
        0     1     3
        1     2     4

        >>> df1_transposed = df1.T # or df1.transpose()
        >>> df1_transposed
              0  1
        col1  1  2
        col2  3  4

        When the dtype is homogeneous in the original DataFrame, we get a
        transposed DataFrame with the same dtype:

        >>> df1.dtypes
        col1    int64
        col2    int64
        dtype: object
        >>> df1_transposed.dtypes
        0    int64
        1    int64
        dtype: object

        **Non-square DataFrame with mixed dtypes**

        >>> d2 = {'name': ['Alice', 'Bob'],
        ...       'score': [9.5, 8],
        ...       'employed': [False, True],
        ...       'kids': [0, 0]}
        >>> df2 = pd.DataFrame(data=d2)
        >>> df2
            name  score  employed  kids
        0  Alice    9.5     False     0
        1    Bob    8.0      True     0

        >>> df2_transposed = df2.T # or df2.transpose()
        >>> df2_transposed
                      0     1
        name      Alice   Bob
        score       9.5   8.0
        employed  False  True
        kids          0     0

        When the DataFrame has mixed dtypes, we get a transposed DataFrame with
        the `object` dtype:

        >>> df2.dtypes
        name         object
        score       float64
        employed       bool
        kids          int64
        dtype: object
        >>> df2_transposed.dtypes
        0    object
        1    object
        dtype: object
        

202. truediv
Get Floating division of dataframe and other, element-wise (binary operator `truediv`).

Equivalent to ``dataframe / other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rtruediv`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles	degrees
circle	         0	    720
triangle	     0	    360
rectangle	     0	    720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles	degrees
circle		     0	      0
triangle	     6	    360
rectangle	    12	   1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


203. truncate
        Truncate a Series or DataFrame before and after some index value.

        This is a useful shorthand for boolean indexing based on index
        values above or below certain thresholds.

        Parameters
        ----------
        before : date, str, int
            Truncate all rows before this index value.
        after : date, str, int
            Truncate all rows after this index value.
        axis : {0 or 'index', 1 or 'columns'}, optional
            Axis to truncate. Truncates the index (rows) by default.
            For `Series` this parameter is unused and defaults to 0.
        copy : bool, default is True,
            Return a copy of the truncated section.

        Returns
        -------
        type of caller
            The truncated Series or DataFrame.

        See Also
        --------
        DataFrame.loc : Select a subset of a DataFrame by label.
        DataFrame.iloc : Select a subset of a DataFrame by position.

        Notes
        -----
        If the index being truncated contains only datetime values,
        `before` and `after` may be specified as strings instead of
        Timestamps.

        Examples
        --------
        >>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
        ...                    'B': ['f', 'g', 'h', 'i', 'j'],
        ...                    'C': ['k', 'l', 'm', 'n', 'o']},
        ...                   index=[1, 2, 3, 4, 5])
        >>> df
           A  B  C
        1  a  f  k
        2  b  g  l
        3  c  h  m
        4  d  i  n
        5  e  j  o

        >>> df.truncate(before=2, after=4)
           A  B  C
        2  b  g  l
        3  c  h  m
        4  d  i  n

        The columns of a DataFrame can be truncated.

        >>> df.truncate(before="A", after="B", axis="columns")
           A  B
        1  a  f
        2  b  g
        3  c  h
        4  d  i
        5  e  j

        For Series, only rows can be truncated.

        >>> df['A'].truncate(before=2, after=4)
        2    b
        3    c
        4    d
        Name: A, dtype: object

        The index values in ``truncate`` can be datetimes or string
        dates.

        >>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s')
        >>> df = pd.DataFrame(index=dates, data={'A': 1})
        >>> df.tail()
                             A
        2016-01-31 23:59:56  1
        2016-01-31 23:59:57  1
        2016-01-31 23:59:58  1
        2016-01-31 23:59:59  1
        2016-02-01 00:00:00  1

        >>> df.truncate(before=pd.Timestamp('2016-01-05'),
        ...             after=pd.Timestamp('2016-01-10')).tail()
                             A
        2016-01-09 23:59:56  1
        2016-01-09 23:59:57  1
        2016-01-09 23:59:58  1
        2016-01-09 23:59:59  1
        2016-01-10 00:00:00  1

        Because the index is a DatetimeIndex containing only dates, we can
        specify `before` and `after` as strings. They will be coerced to
        Timestamps before truncation.

        >>> df.truncate('2016-01-05', '2016-01-10').tail()
                             A
        2016-01-09 23:59:56  1
        2016-01-09 23:59:57  1
        2016-01-09 23:59:58  1
        2016-01-09 23:59:59  1
        2016-01-10 00:00:00  1

        Note that ``truncate`` assumes a 0 value for any unspecified time
        component (midnight). This differs from partial string slicing, which
        returns any partially matching dates.

        >>> df.loc['2016-01-05':'2016-01-10', :].tail()
                             A
        2016-01-10 23:59:55  1
        2016-01-10 23:59:56  1
        2016-01-10 23:59:57  1
        2016-01-10 23:59:58  1
        2016-01-10 23:59:59  1
        

204. tz_convert
Convert tz-aware axis to target time zone.

Parameters
----------
tz : str or tzinfo object
axis : the axis to convert
level : int, str, default None
    If axis is a MultiIndex, convert a specific level. Otherwise
    must be None.
copy : bool, default True
    Also make a copy of the underlying data.

Returns
-------
Series/DataFrame
    Object with time zone converted axis.

Raises
------
TypeError
    If the axis is tz-naive.


205. tz_localize
Localize tz-naive index of a Series or DataFrame to target time zone.

This operation localizes the Index. To localize the values in a
timezone-naive Series, use :meth:`Series.dt.tz_localize`.

Parameters
----------
tz : str or tzinfo
axis : the axis to localize
level : int, str, default None
    If axis ia a MultiIndex, localize a specific level. Otherwise
    must be None.
copy : bool, default True
    Also make a copy of the underlying data.
ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
    When clocks moved backward due to DST, ambiguous times may arise.
    For example in Central European Time (UTC+01), when going from
    03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at
    00:30:00 UTC and at 01:30:00 UTC. In such a situation, the
    `ambiguous` parameter dictates how ambiguous times should be
    handled.

    - 'infer' will attempt to infer fall dst-transition hours based on
      order
    - bool-ndarray where True signifies a DST time, False designates
      a non-DST time (note that this flag is only applicable for
      ambiguous times)
    - 'NaT' will return NaT where there are ambiguous times
    - 'raise' will raise an AmbiguousTimeError if there are ambiguous
      times.
nonexistent : str, default 'raise'
    A nonexistent time does not exist in a particular timezone
    where clocks moved forward due to DST. Valid values are:

    - 'shift_forward' will shift the nonexistent time forward to the
      closest existing time
    - 'shift_backward' will shift the nonexistent time backward to the
      closest existing time
    - 'NaT' will return NaT where there are nonexistent times
    - timedelta objects will shift nonexistent times by the timedelta
    - 'raise' will raise an NonExistentTimeError if there are
      nonexistent times.

Returns
-------
Series/DataFrame
    Same type as the input.

Raises
------
TypeError
    If the TimeSeries is tz-aware and tz is not None.

Examples
--------
Localize local times:

>>> s = pd.Series([1],
...               index=pd.DatetimeIndex(['2018-09-15 01:30:00']))
>>> s.tz_localize('CET')
2018-09-15 01:30:00+02:00    1
dtype: int64

Be careful with DST changes. When there is sequential data, pandas
can infer the DST time:

>>> s = pd.Series(range(7),
...               index=pd.DatetimeIndex(['2018-10-28 01:30:00',
...                                       '2018-10-28 02:00:00',
...                                       '2018-10-28 02:30:00',
...                                       '2018-10-28 02:00:00',
...                                       '2018-10-28 02:30:00',
...                                       '2018-10-28 03:00:00',
...                                       '2018-10-28 03:30:00']))
>>> s.tz_localize('CET', ambiguous='infer')
2018-10-28 01:30:00+02:00    0
2018-10-28 02:00:00+02:00    1
2018-10-28 02:30:00+02:00    2
2018-10-28 02:00:00+01:00    3
2018-10-28 02:30:00+01:00    4
2018-10-28 03:00:00+01:00    5
2018-10-28 03:30:00+01:00    6
dtype: int64

In some cases, inferring the DST is impossible. In such cases, you can
pass an ndarray to the ambiguous parameter to set the DST explicitly

>>> s = pd.Series(range(3),
...               index=pd.DatetimeIndex(['2018-10-28 01:20:00',
...                                       '2018-10-28 02:36:00',
...                                       '2018-10-28 03:46:00']))
>>> s.tz_localize('CET', ambiguous=np.array([True, True, False]))
2018-10-28 01:20:00+02:00    0
2018-10-28 02:36:00+02:00    1
2018-10-28 03:46:00+01:00    2
dtype: int64

If the DST transition causes nonexistent times, you can shift these
dates forward or backward with a timedelta object or `'shift_forward'`
or `'shift_backward'`.

>>> s = pd.Series(range(2),
...               index=pd.DatetimeIndex(['2015-03-29 02:30:00',
...                                       '2015-03-29 03:30:00']))
>>> s.tz_localize('Europe/Warsaw', nonexistent='shift_forward')
2015-03-29 03:00:00+02:00    0
2015-03-29 03:30:00+02:00    1
dtype: int64
>>> s.tz_localize('Europe/Warsaw', nonexistent='shift_backward')
2015-03-29 01:59:59.999999999+01:00    0
2015-03-29 03:30:00+02:00              1
dtype: int64
>>> s.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H'))
2015-03-29 03:30:00+02:00    0
2015-03-29 03:30:00+02:00    1
dtype: int64


206. unstack
        Pivot a level of the (necessarily hierarchical) index labels.

        Returns a DataFrame having a new level of column labels whose inner-most level
        consists of the pivoted index labels.

        If the index is not a MultiIndex, the output will be a Series
        (the analogue of stack when the columns are not a MultiIndex).

        Parameters
        ----------
        level : int, str, or list of these, default -1 (last level)
            Level(s) of index to unstack, can pass level name.
        fill_value : int, str or dict
            Replace NaN with this value if the unstack produces missing values.

        Returns
        -------
        Series or DataFrame

        See Also
        --------
        DataFrame.pivot : Pivot a table based on column values.
        DataFrame.stack : Pivot a level of the column labels (inverse operation
            from `unstack`).

        Notes
        -----
        Reference :ref:`the user guide <reshaping.stacking>` for more examples.

        Examples
        --------
        >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
        ...                                    ('two', 'a'), ('two', 'b')])
        >>> s = pd.Series(np.arange(1.0, 5.0), index=index)
        >>> s
        one  a   1.0
             b   2.0
        two  a   3.0
             b   4.0
        dtype: float64

        >>> s.unstack(level=-1)
             a   b
        one  1.0  2.0
        two  3.0  4.0

        >>> s.unstack(level=0)
           one  two
        a  1.0   3.0
        b  2.0   4.0

        >>> df = s.unstack(level=0)
        >>> df.unstack()
        one  a  1.0
             b  2.0
        two  a  3.0
             b  4.0
        dtype: float64
        

207. update
        Modify in place using non-NA values from another DataFrame.

        Aligns on indices. There is no return value.

        Parameters
        ----------
        other : DataFrame, or object coercible into a DataFrame
            Should have at least one matching index/column label
            with the original DataFrame. If a Series is passed,
            its name attribute must be set, and that will be
            used as the column name to align with the original DataFrame.
        join : {'left'}, default 'left'
            Only left join is implemented, keeping the index and columns of the
            original object.
        overwrite : bool, default True
            How to handle non-NA values for overlapping keys:

            * True: overwrite original DataFrame's values
              with values from `other`.
            * False: only update values that are NA in
              the original DataFrame.

        filter_func : callable(1d-array) -> bool 1d-array, optional
            Can choose to replace values other than NA. Return True for values
            that should be updated.
        errors : {'raise', 'ignore'}, default 'ignore'
            If 'raise', will raise a ValueError if the DataFrame and `other`
            both contain non-NA data in the same place.

        Returns
        -------
        None : method directly changes calling object

        Raises
        ------
        ValueError
            * When `errors='raise'` and there's overlapping non-NA data.
            * When `errors` is not either `'ignore'` or `'raise'`
        NotImplementedError
            * If `join != 'left'`

        See Also
        --------
        dict.update : Similar method for dictionaries.
        DataFrame.merge : For column(s)-on-column(s) operations.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2, 3],
        ...                    'B': [400, 500, 600]})
        >>> new_df = pd.DataFrame({'B': [4, 5, 6],
        ...                        'C': [7, 8, 9]})
        >>> df.update(new_df)
        >>> df
           A  B
        0  1  4
        1  2  5
        2  3  6

        The DataFrame's length does not increase as a result of the update,
        only values at matching index/column labels are updated.

        >>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
        ...                    'B': ['x', 'y', 'z']})
        >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
        >>> df.update(new_df)
        >>> df
           A  B
        0  a  d
        1  b  e
        2  c  f

        For Series, its name attribute must be set.

        >>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
        ...                    'B': ['x', 'y', 'z']})
        >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
        >>> df.update(new_column)
        >>> df
           A  B
        0  a  d
        1  b  y
        2  c  e
        >>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
        ...                    'B': ['x', 'y', 'z']})
        >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
        >>> df.update(new_df)
        >>> df
           A  B
        0  a  x
        1  b  d
        2  c  e

        If `other` contains NaNs the corresponding values are not updated
        in the original dataframe.

        >>> df = pd.DataFrame({'A': [1, 2, 3],
        ...                    'B': [400, 500, 600]})
        >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
        >>> df.update(new_df)
        >>> df
           A      B
        0  1    4.0
        1  2  500.0
        2  3    6.0
        

208. value_counts
        Return a Series containing counts of unique rows in the DataFrame.

        .. versionadded:: 1.1.0

        Parameters
        ----------
        subset : list-like, optional
            Columns to use when counting unique combinations.
        normalize : bool, default False
            Return proportions rather than frequencies.
        sort : bool, default True
            Sort by frequencies.
        ascending : bool, default False
            Sort in ascending order.
        dropna : bool, default True
            Don’t include counts of rows that contain NA values.

            .. versionadded:: 1.3.0

        Returns
        -------
        Series

        See Also
        --------
        Series.value_counts: Equivalent method on Series.

        Notes
        -----
        The returned Series will have a MultiIndex with one level per input
        column. By default, rows that contain any NA values are omitted from
        the result. By default, the resulting Series will be in descending
        order so that the first element is the most frequently-occurring row.

        Examples
        --------
        >>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6],
        ...                    'num_wings': [2, 0, 0, 0]},
        ...                   index=['falcon', 'dog', 'cat', 'ant'])
        >>> df
                num_legs  num_wings
        falcon         2          2
        dog            4          0
        cat            4          0
        ant            6          0

        >>> df.value_counts()
        num_legs  num_wings
        4         0            2
        2         2            1
        6         0            1
        dtype: int64

        >>> df.value_counts(sort=False)
        num_legs  num_wings
        2         2            1
        4         0            2
        6         0            1
        dtype: int64

        >>> df.value_counts(ascending=True)
        num_legs  num_wings
        2         2            1
        6         0            1
        4         0            2
        dtype: int64

        >>> df.value_counts(normalize=True)
        num_legs  num_wings
        4         0            0.50
        2         2            0.25
        6         0            0.25
        dtype: float64

        With `dropna` set to `False` we can also count rows with NA values.

        >>> df = pd.DataFrame({'first_name': ['John', 'Anne', 'John', 'Beth'],
        ...                    'middle_name': ['Smith', pd.NA, pd.NA, 'Louise']})
        >>> df
          first_name middle_name
        0       John       Smith
        1       Anne        <NA>
        2       John        <NA>
        3       Beth      Louise

        >>> df.value_counts()
        first_name  middle_name
        Beth        Louise         1
        John        Smith          1
        dtype: int64

        >>> df.value_counts(dropna=False)
        first_name  middle_name
        Anne        NaN            1
        Beth        Louise         1
        John        Smith          1
                    NaN            1
        dtype: int64
        

209. values
ndarray(shape, dtype=float, buffer=None, offset=0,
            strides=None, order=None)

    An array object represents a multidimensional, homogeneous array
    of fixed-size items.  An associated data-type object describes the
    format of each element in the array (its byte-order, how many bytes it
    occupies in memory, whether it is an integer, a floating point number,
    or something else, etc.)

    Arrays should be constructed using `array`, `zeros` or `empty` (refer
    to the See Also section below).  The parameters given here refer to
    a low-level method (`ndarray(...)`) for instantiating an array.

    For more information, refer to the `numpy` module and examine the
    methods and attributes of an array.

    Parameters
    ----------
    (for the __new__ method; see Notes below)

    shape : tuple of ints
        Shape of created array.
    dtype : data-type, optional
        Any object that can be interpreted as a numpy data type.
    buffer : object exposing buffer interface, optional
        Used to fill the array with data.
    offset : int, optional
        Offset of array data in buffer.
    strides : tuple of ints, optional
        Strides of data in memory.
    order : {'C', 'F'}, optional
        Row-major (C-style) or column-major (Fortran-style) order.

    Attributes
    ----------
    T : ndarray
        Transpose of the array.
    data : buffer
        The array's elements, in memory.
    dtype : dtype object
        Describes the format of the elements in the array.
    flags : dict
        Dictionary containing information related to memory use, e.g.,
        'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
    flat : numpy.flatiter object
        Flattened version of the array as an iterator.  The iterator
        allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
        assignment examples; TODO).
    imag : ndarray
        Imaginary part of the array.
    real : ndarray
        Real part of the array.
    size : int
        Number of elements in the array.
    itemsize : int
        The memory use of each array element in bytes.
    nbytes : int
        The total number of bytes required to store the array data,
        i.e., ``itemsize * size``.
    ndim : int
        The array's number of dimensions.
    shape : tuple of ints
        Shape of the array.
    strides : tuple of ints
        The step-size required to move from one element to the next in
        memory. For example, a contiguous ``(3, 4)`` array of type
        ``int16`` in C-order has strides ``(8, 2)``.  This implies that
        to move from element to element in memory requires jumps of 2 bytes.
        To move from row-to-row, one needs to jump 8 bytes at a time
        (``2 * 4``).
    ctypes : ctypes object
        Class containing properties of the array needed for interaction
        with ctypes.
    base : ndarray
        If the array is a view into another array, that array is its `base`
        (unless that array is also a view).  The `base` array is where the
        array data is actually stored.

    See Also
    --------
    array : Construct an array.
    zeros : Create an array, each element of which is zero.
    empty : Create an array, but leave its allocated memory unchanged (i.e.,
            it contains "garbage").
    dtype : Create a data-type.
    numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>`
                           w.r.t. its `dtype.type <numpy.dtype.type>`.

    Notes
    -----
    There are two modes of creating an array using ``__new__``:

    1. If `buffer` is None, then only `shape`, `dtype`, and `order`
       are used.
    2. If `buffer` is an object exposing the buffer interface, then
       all keywords are interpreted.

    No ``__init__`` method is needed because the array is fully initialized
    after the ``__new__`` method.

    Examples
    --------
    These examples illustrate the low-level `ndarray` constructor.  Refer
    to the `See Also` section above for easier ways of constructing an
    ndarray.

    First mode, `buffer` is None:

    >>> np.ndarray(shape=(2,2), dtype=float, order='F')
    array([[0.0e+000, 0.0e+000], # random
           [     nan, 2.5e-323]])

    Second mode:

    >>> np.ndarray((2,), buffer=np.array([1,2,3]),
    ...            offset=np.int_().itemsize,
    ...            dtype=int) # offset = 1*itemsize, i.e. skip first element
    array([2, 3])

210. var
Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters
----------
axis : {index (0), columns (1)}
    For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
    Exclude NA/null values. If an entire row/column is NA, the result
    will be NA.
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a
    particular level, collapsing into a Series.

    .. deprecated:: 1.3.0
        The level keyword is deprecated. Use groupby instead.
ddof : int, default 1
    Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
    where N represents the number of elements.
numeric_only : bool, default None
    Include only float, int, boolean columns. If None, will attempt to use
    everything, then use only numeric data. Not implemented for Series.

    .. deprecated:: 1.5.0
        Specifying ``numeric_only=None`` is deprecated. The default value will be
        ``False`` in a future version of pandas.

Returns
-------
Series or DataFrame (if level specified) 

Examples
--------
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3],
...                   'age': [21, 25, 62, 43],
...                   'height': [1.61, 1.87, 1.49, 2.01]}
...                  ).set_index('person_id')
>>> df
           age  height
person_id
0           21    1.61
1           25    1.87
2           62    1.49
3           43    2.01

>>> df.var()
age       352.916667
height      0.056367

Alternatively, ``ddof=0`` can be set to normalize by N instead of N-1:

>>> df.var(ddof=0)
age       264.687500
height      0.042275


211. where
None

212. xs
        Return cross-section from the Series/DataFrame.

        This method takes a `key` argument to select data at a particular
        level of a MultiIndex.

        Parameters
        ----------
        key : label or tuple of label
            Label contained in the index, or partially in a MultiIndex.
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Axis to retrieve cross-section on.
        level : object, defaults to first n levels (n=1 or len(key))
            In case of a key partially contained in a MultiIndex, indicate
            which levels are used. Levels can be referred by label or position.
        drop_level : bool, default True
            If False, returns object with same levels as self.

        Returns
        -------
        Series or DataFrame
            Cross-section from the original Series or DataFrame
            corresponding to the selected index levels.

        See Also
        --------
        DataFrame.loc : Access a group of rows and columns
            by label(s) or a boolean array.
        DataFrame.iloc : Purely integer-location based indexing
            for selection by position.

        Notes
        -----
        `xs` can not be used to set values.

        MultiIndex Slicers is a generic way to get/set values on
        any level or levels.
        It is a superset of `xs` functionality, see
        :ref:`MultiIndex Slicers <advanced.mi_slicers>`.

        Examples
        --------
        >>> d = {'num_legs': [4, 4, 2, 2],
        ...      'num_wings': [0, 0, 2, 2],
        ...      'class': ['mammal', 'mammal', 'mammal', 'bird'],
        ...      'animal': ['cat', 'dog', 'bat', 'penguin'],
        ...      'locomotion': ['walks', 'walks', 'flies', 'walks']}
        >>> df = pd.DataFrame(data=d)
        >>> df = df.set_index(['class', 'animal', 'locomotion'])
        >>> df
                                   num_legs  num_wings
        class  animal  locomotion
        mammal cat     walks              4          0
               dog     walks              4          0
               bat     flies              2          2
        bird   penguin walks              2          2

        Get values at specified index

        >>> df.xs('mammal')
                           num_legs  num_wings
        animal locomotion
        cat    walks              4          0
        dog    walks              4          0
        bat    flies              2          2

        Get values at several indexes

        >>> df.xs(('mammal', 'dog'))
                    num_legs  num_wings
        locomotion
        walks              4          0

        Get values at specified index and level

        >>> df.xs('cat', level=1)
                           num_legs  num_wings
        class  locomotion
        mammal walks              4          0

        Get values at several indexes and levels

        >>> df.xs(('bird', 'walks'),
        ...       level=[0, 'locomotion'])
                 num_legs  num_wings
        animal
        penguin         2          2

        Get values at specified column and axis

        >>> df.xs('num_wings', axis=1)
        class   animal   locomotion
        mammal  cat      walks         0
                dog      walks         0
                bat      flies         2
        bird    penguin  walks         2
        Name: num_wings, dtype: int64